The Future Rides With Us

MTA 20-Year Needs Assessment (2025-2044)
Contents

- **Introduction** ... 1
 - A pivotal moment .. 2
 - Our plan ... 22

- **Rebuild** .. 28
 - Reconstruct ... 32
 - Renew ... 54
 - Modernize .. 70

- **Improve** .. 82
 - Accessibility ... 84
 - Resilience ... 96
 - Sustainability .. 114
 - Innovation and technology 124

- **Expand** ... 132
 - Comparative Evaluation 141

- **Next Steps** ... 150
I always say New York couldn’t exist without the transit system. The City’s density, its economy, and our way of life wouldn’t be possible if the over 8 million people who live in the City—and the 15 million total in the 12-county MTA region—were only getting around in private cars.

In the decades since Richard Ravitch inaugurated the first Capital Program in 1982, the MTA, with support from City partners, has brought the subway system back from the brink. Today, MTA subway cars break down less than 10% as frequently, while Long Island Rail Road and Metro-North Railroad are poised to run over 30% more trains this year than in 1985. Nevertheless, the MTA network—an asset valued at $1.5 trillion—continues to age and deteriorate after decades of underinvestment that we’ve only recently begun to make up for.

The new 20-Year Needs Assessment takes an unprecedented look at where we are and what improvements are needed to preserve and modernize our vast and aging system, at the same time considering the profound societal shift in how riders use transit and the growing threat of climate change.

New York’s future is at risk if we don’t act now to rebuild the foundation of the MTA network. We must achieve the long-dreamed-of State of Good Repair for the system we have today, while planning for the second half of this century and the new travel patterns, technologies, and jobs that are still to come.

Our vision of the future also calls for expanding MTA service where it makes sense to meet the needs of our ever-growing population and to better connect historically disadvantaged communities to employment, education, health care and everything else. Millions of New Yorkers—even our neighbors in adjacent states—their children, and their grandchildren are depending on it.

Thanks to the dedicated staff who worked on this document—utilizing first-ever highly detailed underlying data collected about nearly 6 million physical assets and components across the MTA—this 20-Year Needs Assessment is the most comprehensive and actionable in our agency’s history, and the MTA is ready to address the challenges it identifies. I’m confident that with the right investments, we can deliver a better transit system than we found—one that is more resilient, more reliable, and more equitable than ever before.
The 20-Year Needs Assessment is a broad, comprehensive blueprint that outlines the MTA region’s transportation capital needs for the next generation. It provides an extensive, long-term view based upon rigorous data analysis across all the MTA agencies. It’s also an opportunity to look beyond today’s constraints to envision the possible future of the system if the right investments are made.
A pivotal moment

Over the past century, New York's transit network has successfully powered the region into global prominence. Today, a series of existential forces are converging—including aging infrastructure in need of ongoing repair—making this a pivotal moment for the MTA and the future of New York.

Challenges

Aging infrastructure

A vast and aging transit network was largely built more than a century ago and could experience catastrophic breakdowns without intervention.

Our system is old.

Our transportation system has served the region for more than 100 years—and much of it is now in desperate need of replacement.

Over the next 20 years, we will be celebrating some milestone anniversaries:

- **200 years** of the Long Island Rail Road (LIRR)
- **125 years** of the New York City Transit (NYCT) subway system
- **125 years** of Metro-North Railroad (Metro-North) Grand Central Terminal
- **100 years** of MTA Bridges and Tunnels (B&T)

New York's future is riding on us to keep up with investment.

Without investment, the reliability of our system is at risk.

With $1.5 trillion in assets, keeping our system in a state of good repair is essential—but our investment has not kept pace with comparable infrastructure. Aging assets require increased maintenance attention and can become obsolete, resulting in higher costs to keep them operational and more disruptive shutdowns for repairs.

We can't uphold our commitment to reliable service if critical components can no longer work as they should. And without reliable and safe service, New York's region is at risk.
Climate change

Climate change is imperiling infrastructure that was not designed to withstand extreme weather events.

The threat posed by climate change is here—and we must continue to prepare.

Over the next two decades, climate change projections indicate that the New York region will experience more frequent and intense coastal storms, more than twice the current number of torrential rainfall events, and triple the current number of extreme heat days over 90 degrees.

MTA infrastructure was not built to withstand these conditions.

Over the past decade, we have experienced severe weather events with increasing regularity. In 2012, coastal flooding from Superstorm Sandy devastated our system, inundating nine under-river subway tubes, the Queens-Midtown and Hugh L. Carey tunnels, and dozens of other critical facilities. In more recent years, flash floods caused by heavy rains have repeatedly wreaked havoc on our infrastructure, overwhelming municipal sewers and pouring into subway stations and train yards, as well as washing out exposed sections of our track.

While we’ve already made significant and unprecedented investments to fortify the system against severe weather, the severity of the risk and the scale our vulnerability requires us to do even more.

Despite progress, multiple threats presented by climate hazards—particularly floods and extreme heat—mean there is much more to be done.

For example:

» Over 400 miles of New York City’s subway track are underground or below grade and potentially vulnerable to inland floods caused by torrential rainfall.

» Over 50% of the Metro-North Hudson Line is vulnerable to coastal surge from storms today. Exposure will grow as sea levels rise and as coastal storms become more frequent and intense.

» Multiple LIRR stations will likely experience regular, damaging tidal flooding mid-century due to sea level rise.

To protect our system, we must prepare for the threats we know are coming. The MTA will proactively act on these current and future risks through data-driven approaches that inform climate resilient infrastructure investments.
Changing rider needs

A profound societal transformation around travel, work, and what riders expect from a transit experience is underway.

Our region is projected to grow by over 1 million residents and nearly 1 million jobs by 2045. We must be ready—or risk stifling a new generation of growth.

Millions of New Yorkers commute daily and depend on us keeping up with service.

The MTA network was originally designed for a traditional commute to Manhattan, Monday through Friday, 9 a.m. to 5 p.m. For millions of New Yorkers, this need hasn’t changed. Even with the uptick in remote work, the vast majority of New Yorkers commute, including especially essential workers, and need the transit system to run frequently and reliably. These commuters include some of our city’s most vulnerable people, who depend on us every day to maintain a high level of service.

Millions more have a choice—and the region’s economy hangs in the balance.

With the disruption of the pandemic and the rise of remote work, others have a choice on whether to ride our system or not. This is borne out by the data; while weekday peak ridership remains the busiest time in our system, off-peak and especially weekend ridership has recovered faster as a percentage of its pre-pandemic levels.

Continuing to attract riders is essential to the economic future of our region. It is more important than ever that the MTA offer reliable, safe, and convenient service.
To support a new generation of growth, we must adapt to our region’s evolving needs.

Although Manhattan is still important, and traditional peak travel times are still the peaks, new demands are emerging that we must address.

<table>
<thead>
<tr>
<th>Location</th>
<th>Jobs</th>
<th>1m</th>
<th>2m</th>
<th>3m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manhattan</td>
<td>2,650,527</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rest of NYC</td>
<td>2,172,576</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long Island</td>
<td>1,207,385</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower Hudson</td>
<td>854,330</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conn.</td>
<td>852,351</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Increasingly dispersed business districts outside of Manhattan. While Manhattan continues to have the largest concentration of jobs, the emergence of business districts around the region is resulting in more intra- and inter-borough travel, as well as reverse commuting. Population growth is fastest in the outer boroughs, creating a cycle of economic and residential growth outside of Manhattan.

More varied commute times as work schedules evolve. With the region projected to grow by nearly 1 million jobs over the next two decades, some of the fastest growing industries, such as health care, accommodation, and food services, require travel at all times of day and an in-person workforce.

Increase in off-peak travel. In the years leading up to the COVID-19 pandemic, growing numbers of New Yorkers were choosing transit for trips during off-peak times.

Traditionally, the MTA has used these off-peak hours for repairs, projects, and maintenance. It is more important than ever to keep our infrastructure in a state of good repair to minimize disruption and provide the services that our riders need, when they need it, to keep the region on its path toward growth.

New Yorkers are increasingly taking subways and buses during off-peak hours for health care, shopping, social gatherings, and recreational trips.

Off-peak ridership (2001-2018)

- **24% increase** subway
- **18% increase** LIRR
- **24% increase** Metro-North
If we ignore these threats, we risk the survival of the system itself—and New York with it.

Without more aggressive intervention, the deteriorating structural beams holding up the 110-year-old Train Shed at Grand Central Terminal—that supports Park Avenue and provides a roof for trains—are at risk of failure, suspending Metro-North service into Manhattan.

In 20 years, more than 75% of the New York City subway major power substation components will be more than half a century old, risking extended power outages across the system and potentially shutting down multiple lines.

As climate change accelerates and extreme weather events become more common, we risk asset failures and system shutdowns without targeted climate resilience protections.
Our choice

New York has demonstrated throughout its history that investment in transit is the key to unlocking economic growth for the region—and that failure to do so has dire consequences. Now it's our turn to confront upcoming challenges and secure the future for the next generation.

We've been here before...

After transit investments more than 100 years ago made modern New York possible, unleashing more than two generations of growth, by the 1970s the system had been allowed to fall into disrepair. As the transit system deteriorated, the city’s population and economy plummeted with it, pushing New York to the brink of bankruptcy.

A bold investment in mass transit made modern New York possible.

When New York became one of the first cities in the world to build a subway system in 1904, it was during a moment of profound transformation. The advent of the subway enabled New Yorkers to spread out and reach jobs efficiently and safely, unleashing the development of new industries, opportunities, and neighborhoods and catapulting the New York region into the role of a leading global power. Between 1900 and 1950, as the subway system alone grew by 722 miles, the city's population more than doubled from 3.4 million to 7.9 million.

But over the next two decades, the nation saw a rise in suburbanization and automobiles. The transit network that had powered generations of growth fell into decline.

By the 1970s, underinvestment brought the system—and the city—to the brink of collapse.

Deferred maintenance and lack of funding meant that the whole system was at risk. Service deteriorated, and the New York City subways became an emblem of national decay. At the height of the transit crisis in 1983, on-time subway performance dropped below 50%.

With the implosion of the subways came the desertion of the city: New York's population plunged by almost 1 million people.

An ambitious plan to restore the MTA's infrastructure reversed the decline and set New York on a new path to prosperity.

In 1980, New York’s leadership was bold enough to do something different. The MTA’s first capital program, spearheaded by Chair Richard Ravitch, meant that, for the first time, the MTA’s needs were systematically assessed and addressed.

The new program eradicated graffiti on railcars and stations, replaced or restored the entire subway fleet, brought 100% of subway track into good condition, renovated major stations, and purchased new rolling stock for the commuter rail lines.

And it worked. As on-time performance improved, ridership ultimately more than doubled—while the region gained 1.3 million jobs and 1.5 million residents.
But by the 2010s, we had forgotten the lessons of the 1980s.

When the public crisis ended, the sense of political urgency went with it. Unfortunately, though progress had been made, the job was far from done.

While the MTA made investments that were highly visible to riders, there were still significant amounts of work unfinished, including investments in “invisible infrastructure” such as power, maintenance shops, and train yards.

In the 2010s, the system was setting records for ridership—but it became clear that capital investment hadn’t kept up. The system was strained, and service suffered.

By 2017, the hidden problems could be ignored no longer. In what was widely known as “the Summer of Hell,” infrastructure began to break down. That year, New York’s subway had the worst on-time performance of any major rapid transit system in the world. Just 65% of weekday trains reached their destinations on time, the lowest rate since the transit crisis of the 1970s.

We are grateful to the leadership shown by Governor Kathy Hochul and the New York State Legislature for the recent operating budget, which recognized that transit is essential to New York and that cutting service was an unacceptable option for the millions of New Yorkers who depend on transit every day.

This budget enabled us to maintain service levels—even expand it in critical areas—by allowing us to retain workers, pay for utilities, and pay off debt.

But while service levels and personnel are essential, they depend on functioning systems to work. And there is a lot of work still to be done.

Gov. Kathy Hochul on the subway

The most recent capital program was a historic investment, and the recent operating budget was another great step forward.

New York rose to meet the crisis with the historic 2020-2024 Capital Program. Since then, the MTA and its revamped capital division have been building at a historic pace—and more cost-effectively—than ever before.

We are grateful to the leadership shown by Governor Kathy Hochul and the New York State Legislature for the recent operating budget, which recognized that transit is essential to New York and that cutting service was an unacceptable option for the millions of New Yorkers who depend on transit every day.

This 20-Year Needs Assessment is the result. It allows us to plan holistically and proactively for the next 20 years, outlining a path toward a resilient, reliable, modern system that is safer, more efficient, and unlocks a new generation of prosperity.

Today we have a choice: Pick up the pace or risk falling behind again.

Transit is playing a key role in the city’s rebound from COVID-19—but continued success is far from assured.

The scale and age of the transit system—along with threats like climate change and priorities like accessibility—mean there’s a lot more to do if we want to keep service trending in the right direction.

We can make the wrong choice again and watch the region’s potential become choked by an aging system that cannot match the demands of a modern age.

Or we can break the cycle.

The MTA has spent the past two years analyzing every element of our system, which means we know where the problems are and what it will take to fix them.

This 20-Year Needs Assessment is the result. It allows us to plan holistically and proactively for the next 20 years, outlining a path toward a resilient, reliable, modern system that is safer, more efficient, and unlocks a new generation of prosperity.

It underscores the urgency of investing in our region’s transportation network and outlines what capital investments are needed over the next 20 years to keep New York moving.
The MTA is ready to meet this moment

The integration of all capital work under the MTA’s Construction & Development (MTA C&D) agency is enabling projects to be delivered more effectively and quickly, beginning with the historic $55 billion 2020-2024 Capital Plan. In 2022, MTA C&D completed $6.2 billion of work and initiated another $11.4 billion in new projects—delivering a historic level of investment into keeping our system in a state of good repair.

Better

Under a unified agency, we can improve at scale—from implementing delivery models that take advantage of design innovation, to instituting smarter project management, to modernizing our approach to signals and systems. This has led to the completion of major projects—from 10 miles of Third Track, to repair of the LIRR Concourse at Penn Station—all on time and on or under budget.

Faster

We have ramped up the pace of our investment to a historic level—including more than doubling the number of stations made accessible under the Americans with Disabilities Act (ADA) in this capital program compared to previous years. We are also getting projects done faster, with our innovative contracting incentives saving an average of four months compared to the estimated schedule in 2022.

Cheaper

New York’s density, high wages, significant ridership, and complicated logistics all mean that the region is inherently high-cost. Nevertheless, we deliver our state-of-good-repair projects, more than 80% of our capital plan, at costs on par with peers across the country. With a heightened focus on cost containment, our construction contracts came in $345 million under estimate in 2022.

How the MTA is addressing New York’s high construction costs

Building in New York is inherently complex. The city’s density, intricate utilities network, high wages, and complicated logistics all contribute to costly construction. Moreover, running 24/7 service carrying over 40% of the country’s public transit ridership requires building at a size and scale above other transit agencies in the country and most others worldwide.

Despite these factors, costs for MTA’s state-of-good-repair projects, more than 80% of the current capital plan, are largely in line with peer systems across the country. While recent subway expansion projects have high price tags, they are highly cost-beneficial with low cost per rider.

We are committed to reducing costs further across all cost drivers:

<table>
<thead>
<tr>
<th>Major cost driver</th>
<th>How does it impact cost?</th>
<th>What C&D is doing</th>
</tr>
</thead>
<tbody>
<tr>
<td>High ridership and built environment</td>
<td>The MTA accounts for 40% of all public transit riders in the U.S. This means that stations and systems must be sized to meet our higher ridership, from needing to accommodate longer trains to meeting code requirements around safe circulation for millions of riders per day. New York’s dense built environment also contributes to high costs for real estate acquisition, utilities relocation, and logistics and transport costs.</td>
<td>Improved utilities coordination and review</td>
</tr>
<tr>
<td>Regional labor and materials cost</td>
<td>New York has some of the highest labor wages in the world—50% more than similar U.S. cities and more than double that of international peers like London, Paris, and Madrid. This is particularly true for trades most commonly used in our projects, which are double even other high cost U.S. cities like Chicago and San Francisco. We welcome good wage jobs for construction workers, but it leads to higher costs.</td>
<td>Project labor agreements to improve labor efficiency</td>
</tr>
<tr>
<td>Operating constraints and regulation</td>
<td>Rare among major cities, the MTA runs 24/7 operations, which means that new stations require redundant systems, and work on existing infrastructure requires resources to ensure site safety and provide diversion services. Moreover, regulations unique to New York lead to higher costs in areas like insurance.</td>
<td>Strategic sourcing opportunities</td>
</tr>
<tr>
<td>Scope and design</td>
<td>Historically complex design specifications and lack of clearly defined up-front scope has led to increased costs.</td>
<td>Reforms in outages and MTA labor support</td>
</tr>
<tr>
<td>Project delivery</td>
<td>The area most within MTA control, C&D has learned from past practices to improve project delivery—including new delivery approaches, reforms to contract terms that added onerous burdens (and costs) on contractors, and empowering project managers to make decisions.</td>
<td>Insurance reform</td>
</tr>
</tbody>
</table>

> Innovative contract models and incentives

> Contract bundling

> Aggressive project management

> Improved digital management and analytics system
Structural reforms

In 2019, the MTA undertook an independent forensic audit of its capital planning process. Performed by Crowe, a leading accounting firm, the audit assessed the performance of the MTA’s capital program development processes, specifically evaluating project selection for the five-year capital plan.

The recommendations of that audit are being implemented rapidly, highlighted by:

» **A unified planning approach:** With the creation of MTA Construction & Development, capital planning, development, and delivery are being undertaken by a single, purpose-built capital agency.

» **A focus on state of good repair:** More than 80% of the 2020-2024 Capital Program is dedicated to core infrastructure, rather than expansion projects.

» **A smarter approach to data:** As the audit recommended, the MTA has undertaken a thorough effort to modernize and standardize its data collection, establishing detailed inventories of all assets, including asset age and surveyed condition and integrated Enterprise Asset Management (EAM) where possible. As part of the assessment, we incorporated additional essential metrics including performance, criticality, parts obsolescence, and compatibility with modern systems.

A data-driven approach

Hundreds of expert staff from across every MTA agency have spent the past two years examining every element of the MTA’s $1.5 trillion worth of assets, using a robust combination of new, groundbreaking tools, agency data, customer surveys, and long-established inspection protocols, to provide unprecedented insight into the state of our system. Highlights of our sources of data include:

1. **Our agencies perform regular and comprehensive inspections of the conditions of the assets.** These inspections and engineering insights underpin all our findings. Without these, it would be impossible to know the condition of the system.

2. **As we implement our Enterprise Asset Management System,** we have the capability to track the performance of each individual system component. For example, systems like EAM help us to gain insight on where some assets have a pattern of many corrective work hours.

3. **Our customer surveys** help us to understand what customers care about most, particularly reliability, safety, and on-time performance.

4. **Our new climate planning division used geospatial analysis** to identify emerging threats.

5. **Our comprehensive analysis of regional trends** and emerging travel demand helps us to anticipate where new pressures will be made on the system.

6. **Our first ever Comparative Evaluation** systematically compares the costs and benefits of every potential system expansion project, to help us identify the wisest investments, with the greatest impacts.
Our system is vast—and has a lot of needs
This assessment looked at nearly 6 million assets and components across our entire system. To put the vastness of the system and its needs in scale, there are:

» Over 8,700 railcars
 » 63% need to be replaced in the next 20 years

» Nearly 6,000 buses
 » Over 100% will need to be replaced in the next 20 years

» Over 1,000 rail bridges
 » 230 commuter rail bridges require major structural rehabilitation

» 704 passenger stations
 » Close to 50% need communication system upgrades

» Seven vehicular bridges and two tunnels
 » All but the Cross Bay Bridge will be over 75 years old by 2045

» More than 1,900 miles of track and more than 3,500 switches
 » NYCT has more than 200 signal interlockings, 23% of which are in poor or marginal condition

» Over 100 maintenance shops
 » 69% of subway maintenance support shop roofs are in poor/marginal condition

» 493 elevators today (and we will have even more as we add more elevators)
 » 100%—or more—will need to be replaced in the next 20 years

» 550 locations face near-term climate risks
 » Including stations, depots, and substations

Based on the data analyzed, the following chapters summarize the MTA’s strategy to address all critical assets in a poor or marginal condition. This report also includes appendices with more detail on asset inventory and condition for every MTA agency. Budgets and priority projects will be developed as part of the next five-year capital plan to be released in 2024.
We have developed a three-part plan for the next 20 years to achieve the transit network New Yorkers deserve. It is based on three fundamental ideas:

1. **Rebuild**
 - Rebuild the foundation of the system to ensure its survival.

2. **Improve**
 - Improve our network to meet 21st century needs.

3. **Expand**
 - Expand to support future growth.
Our goals

Rebuild our system so it will last another 100 years

- Replace antiquated signals, switches, and interlockings—on subways and on commuter railroads—that contribute to lengthy delays and upgrade our power systems to meet our needs into the future
- Reconstruct the crumbling infrastructure that leads to Grand Central, avoiding catastrophic shutdown of Metro-North service
- Continue to rebuild our 100-year-old LIRR, especially tunnels to maintain Brooklyn service
- Use innovative technology like dehumidifying our bridge cables on the Verrazzano-Narrows Bridge to extend its useful life

Create additional capacity where it is needed most

- Install modern signals across 80% of the subway system to allow us to safely run more trains closer together and improve on-time performance
- Make capacity improvements for LIRR customers that allow for increased speeds through the Jamaica complex, saving riders up to three minutes per day and enabling more predictable track assignments and transfers
- Enable more scheduled trains for Metro-North riders, through implementing Penn Access, upgrading signals and power, and planning for capacity improvements
- Make the subway and commuter rail system convenient to more riders by building connections between neighborhoods by advancing new projects like the Interborough Express (IBX)

Make the system more accessible to all

- Continue investing in ADA accessibility projects to ensure that, by 2045, 90% of all subway rides take place at fully ADA accessible stations
- Make 95% of commuter rail stations accessible by 2045
- Make MTA bridges more accessible to pedestrians and cyclists

Accelerate the fight against climate change

- Ensure the system is ready for all kinds of extreme weather—all subway stations, railroad lines, and critical infrastructure will be protected from climate threats
- Cut the MTA’s operational greenhouse gas emissions at least 85% by converting nearly 6,000 MTA buses to zero-emissions, retrofitting existing facilities, investing in energy-saving technologies, and more
A look at two possible tomorrows

Without proper investment

1. Diesel bus past its useful life
2. Congestion increasing greenhouse gas emissions
3. Inaccessible subway station
4. Daily water infiltration, vulnerable to climate change-driven storms
5. Broken turnstiles
6. Obsolete, malfunctioning communications and other back of house equipment
7. Structural defects
8. Lack of real-time announcements and information
9. Station component defects
10. Crowded platforms waiting for infrequent and unreliable service
11. Old, frequently failing railcars
12. Lack of integrated security
13. Obsolete, frequently failing signals

With proper investment

1. Zero-emissions bus
2. Cleaner streets and cleaner skies
3. ADA-accessible subway station
4. Protected from water infiltration and climate change
5. New, more accessible secure fare array
6. New, more reliable communications and other back of house equipment
7. Rebuilt structure
8. Reduced platform crowding, thanks to frequent and reliable service
9. New, more reliable, and comfortable railcars
10. Enhanced security
11. Modern, more reliable signals
Our future depends on a commitment to rebuild our aging system.

The system is more than a century old, and critical infrastructure is at risk of failure.
We must rebuild our system for the next hundred years.

In some ways, the MTA system has never been stronger. Subway service is performing at its highest level in a decade. LIRR and Metro-North are at greater than 95% on-time performance. Ridership is recovering post-pandemic, and customer satisfaction is increasing.

But the system is more than a century old, and critical infrastructure is at risk of failure.

Keeping our system running requires a comprehensive approach to rebuilding it:

- **Reconstruct**: critical aging infrastructure, catching up with the needs of our existing system to prevent failures and shutdowns.
- **Renew**: essential parts of our system, keeping up with regular replacement cycles to ensure our assets remain in good condition.
- **Modernize**: our outdated technology to bring our infrastructure into the 21st century and deliver the reliability, improved performance and expanded capacity necessary to support our region's growth in the coming decades.

Finally, we must modernize our outdated technology to bring our infrastructure into the 21st century and deliver the reliability, improved performance and expanded capacity necessary to support our region's growth in the coming decades.
Challenges

The system—and the need—is vast.

The scale of our infrastructure is enormous—and a significant portion needs to be rebuilt over the next 20 years. That is especially true of the system’s “hidden infrastructure,” despite its essential role in safe and reliable service. This includes the power substations that provide electricity to the tracks, the shops and yards where railcars can be safely stored and maintained, and the tunnels and structures supporting the tracks that keep the trains running safely.

Deteriorating structures

Multiple essential reconstruction projects of some of our most critical infrastructure are needed over the next 20 years to avoid catastrophic shutdowns.

Bridges and Tunnels

» The lower-level suspended span deck on the Verrazano-Narrows Bridge is in need of replacement to ensure the structure can continue to support the tens of millions of vehicles that travel on it every year between Brooklyn and Staten Island.

Long Island Rail Road

» 76 of 568 bridges are in need of comprehensive rehabilitation; these critical line structures allow trains to go over and under obstacles like roadways, water bodies, and along varying terrain.

Metro-North Railroad

» Platforms along the Harlem Line are crumbling and currently shored up with added wooden supports to avoid collapse.

More than half of Metro-North undergrade structures are in poor or marginal condition.

<table>
<thead>
<tr>
<th>Asset</th>
<th>Percent in Poor/Marginal Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undergrade Bridge</td>
<td>46%</td>
</tr>
<tr>
<td>Undergrade Culvert</td>
<td>65%</td>
</tr>
</tbody>
</table>
Aging power substations

We have a large network of substations across our system that are crucial to delivering power to keep our trains running. However, many of these substations have been around for decades and have major components that are at risk of failure.

New York City Transit

» Over the next 20 years, there will be a threefold increase in the number of major substation components that are at least a half-century old—from almost 300 (25%) today, to over 900 components (77%) in 20 years.

» Additionally, the outdated power control system limits the ability to respond to power related problems, such as an unexpected loss of power.

Metro-North Railroad and Long Island Rail Road

» Approximately 88% of Metro-North substations providing traction power have already exceeded their useful life; more than half of LIRR’s substations were built in the 1970s or earlier. New substations need to be designed to meet the increased power demand of current and future train service as well as upgraded technological features such as cameras and climate control equipment.
Outdated shops and yards

Shops and yards are where we perform maintenance and repairs for our trains and other equipment. These vital support facilities are essential for maintaining a safe and reliable fleet. However, many of these facilities are in extremely poor condition, with leaking roofs, inefficient work areas, poor heating and ventilation, and insufficient employee spaces.

New York City Transit

» Over 200 shop components are in poor or marginal condition, including 73% of subway maintenance shop structures.
» Several of the oldest facilities, including the 240th Street and Livonia shops, are not able to accommodate modern subway cars and must be reconfigured or entirely reconstructed.

Metro-North Railroad and Long Island Rail Road

» 89% of Metro-North shop equipment used for maintaining railcars—such as car cranes and equipment lifts—is in poor or marginal condition.
» 94% of LIRR work locomotives are beyond their useful life and must be replaced.

Maintenance facility

Typically, each of our shops and yards contains one large, central facility where most repair and inspection work is conducted. For regular or ad-hoc maintenance needs, railcars are serviced by our technicians before being put back in service. Typical tasks include large component repairs/swap-outs as well as full bi-monthly inspections.

Employee facility

These auxiliary facilities provide space for needed administrative work as well as bathrooms, changing rooms, and break areas for our staff.

Yard lighting

With 24/7 operating hours and large amounts of outdoor acreage, sufficient lighting is essential for crews to complete tasks safely and efficiently.

Support shop

Some of our yards have additional support facilities that handle specialty tasks. Depending on their capabilities, these facilities can provide services beyond their assigned fleets and send/receive railcars and components from across the system.

Car wash

Moving along tracks kicks up dust that accumulates on car exteriors during normal operations. Our shop and yard facilities are equipped with washing facilities to remove this dust as well as any other visual defects or vandalism that may have occurred while the train was in service.

Work locomotive

In addition to passenger railcars, work trains that provide a variety of maintenance and repair services throughout the system are also stored in our yards when not in use.

Storage tracks

The majority of acreage at our yard facilities is dedicated to car storage. Each yard is generally assigned to one or more service lines, and cars from these lines are stored here as well as given light maintenance and daily inspections.
What we’ve done

Metro-North Railroad

Harmon Shop
We will soon complete the replacement of the 100-year-old Harmon Shop, with new, modern facilities for the inspection and maintenance of locomotives, coach cars, and electric railcars. The new Harmon facility provides Metro-North with sufficient space to carry out its preventative maintenance activities, unscheduled and major repairs so trains can quickly resume operation with minimal delays to service.

Grand Central Train Shed
Work is underway on a section of the Train Shed to replace the roof on E 47 and E 48 streets and a portion of Park Avenue between them.

Long Island Rail Road

Cherry Valley Avenue Bridge
We have replaced the Cherry Valley Avenue Bridge, which was built in 1905 and expanded in 1918. The original bridge was struck by oversized trucks dozens of times in recent years. The new bridge has additional clearance to prevent delays and safety issues caused by these incidents.

Bridges and Tunnels
The majority of the Bronx-Whitestone and Henry Hudson bridges, as well as a significant portion of the Robert F. Kennedy Bridge, have been reconstructed. In addition, the Throgs Neck Bridge suspended span deck has been replaced, and the Verrazzano-Narrows Bridge approaches and upper-level suspended span deck have both been reconfigured and reconstructed.
By making essential investments in our critical infrastructure, we can secure the foundation of our system and prepare it to deliver reliable, modern service for the coming generations of riders.

To see the full plan, please visit future.MTA.info

Highlights include:

1. **Rebuild critical, at-risk structures**
 - We must reconstruct the deteriorating infrastructure that leads to Grand Central to ensure continued Metro-North service to Midtown Manhattan. This crucial work would be completed in phases over the next 20 years to address the Grand Central Train Shed, Park Avenue Viaduct, and Park Avenue Tunnel that provide access to and from Grand Central Terminal and New York City’s Central Business District in Midtown.
 - We must replace the deteriorating platforms at more than 19 Metro-North stations along the Harlem Line.
 - We must fix the LIRR Atlantic Avenue tunnel to keep Brooklyn service running.
 - We must rehabilitate nine LIRR viaducts, encompassing 341 individual spans.
 - We must rebuild parts of our bridges and tunnels that are at risk, including the lower span of the Verrazzano-Narrows Bridge.

2. **Upgrade aging power substations**
 - We must repair critically poor conditions at power substations across the system at an unprecedented pace. This includes upgrading nearly 180 NYCT substation locations to avoid subway slow-downs and the potential for extensive power outages.
 - We must replace major components of over 50 Metro-North substations and install nine new substations in areas lacking sufficient power to maintain reliability across our system.
 - We must completely replace or replace critical components at 72 LIRR substations.

3. **Modernize shops and yards**
 - We must reconstruct functionally obsolete shops including Livonia and 240th St to ensure facilities are safe, comfortable, able to meet current operational needs, and are prepared for future demand.
 - We must renovate railcar and maintenance support shops to 21st century standards that can handle modern trains and support a modern workforce, which will allow us to service newer railcars and infrastructure with updated technology that our riders deserve.
LIRR Third Track Case Study

Third Track added new capacity to the LIRR system. It also reconstructed a critical stretch of the Main Line, including both stations and behind-the-scenes infrastructure. Delivered on time and under budget, it showcased key MTA innovations.

Design-build and bundling

Third Track was a complex project with many moving parts, from station improvements to substations to grade crossing separations to bridge replacements to constructing new parking facilities. No individual element was particularly challenging from a construction perspective, the logistics and sequencing of the work was the key challenge. A design-build contract that bundled what could have been 50 separate projects together put the responsibility and risk with the party best positioned to mitigate them. As a result, we were able to keep the project on schedule.

Define the right scope

During an extensive consultation process, MTA worked with the contracting community to solicit ideas to improve the project’s design and delivery. Among other things, this allowed us to incorporate an alternative track alignment that made the project significantly easier to deliver. As a result of this consultation, a project that was initially estimated to take eight years took just five.

Project team accountability

The project teams, both at MTA and at our contractor, were empowered to make decisions and given a mandate to coordinate all work, aggressively control scope expansion, and enact performance oversight. The leadership on both the MTA and contracting sides developed a strong working relationship in their co-located field office. Given the tools they needed to manage the project successfully, this leadership team was held accountable by MTA leadership as the project progressed, with constant future projections ensuring the project remained on track.

The results

- 9.8 miles of track
- Seven upgraded stations, with:
 - Six pedestrian overpasses
 - 15 ADA elevators
- Seven bridge replacements
- Eight substation replacements and upgrades
- Eight grade crossing eliminations
- 7.5 miles in retaining walls

Spotlight: Grade crossing eliminations

Utilizing an innovative box-jacking system, our construction crews complete these complex jobs faster and easier. With close coordination between the contractor and LIRR forces, we were able to install a new railroad bridge over a new underpass in a single weekend, dramatically minimizing interruptions to LIRR riders. This compares to the weeks, months, or even years that similar projects took in the past.

Together with Grand Central Madison and other improvements, Third Track enables a 40% increase in LIRR service.

Bridge construction at Willis Avenue
Visitors to New York City Transit’s (NYCT) Livonia Maintenance Facility in East New York, Brooklyn, would be forgiven for thinking they had stepped back in time to the industrial revolution, rather than a vital 21st century repair facility responsible for maintaining all of the trains for the subway’s 3 line and the Times Square Shuttle.

Railcar maintenance facilities are essential to keeping our passenger railcars in good working order. They should be able to efficiently and safely manage all inspection and cleaning tasks, and perform comprehensive maintenance for 21st century railcars.

Instead, as you step inside the hulking brick building at Livonia, the walls are cracked and deteriorating. When it rains, water leaks through the roof then pools on the floor because several of the drains have collapsed or become too clogged to use. In the winter, a single boiler heats the facility and much of the warmth escapes through the holes in the walls and ceiling.

Over the years, we have created additional makeshift bathrooms and locker rooms because the shop was built without facilities for women.

These conditions must be improved. Livonia was built to service trains in 1922. Since then, designs have changed—and the facility can’t keep up. Our newest trains have roof—mounted air conditioning units, and with Livonia’s low ceilings, we can’t access them for maintenance. As a result, we are unable to replace any trains along the 3 line—even though all of the 2 trains have received more modern railcars.

The low ceilings and narrow aisles also restrict the use of cranes and the ability to move other equipment and trains around within the shop, forcing employees to inefficiently shift trains back and forth like a puzzle. The trenches underneath the trains are too shallow and cramped for our mechanics, requiring them to squat to do their work.

Our sprawling system of maintenance facilities, shops, and yards—some of which were built over 100 years ago—need modernization to support new passenger fleets.
This isn’t an isolated issue, but we have a plan

When these facilities are unable to function efficiently—or even at all—service suffers. If you’ve ever been frustrated by a completely empty train flying past you in a station late at night, it’s probably traveling to a far-flung facility because its home shop doesn’t have the right tools to care for it properly.

Until we update and reconfigure Livonia, we won’t be able to modernize trains on the 3 line—denying riders the comfort, convenience, and reliability they deserve. If we fail to act, it could force riders on those trains to endure car failure rates over five times more than those of a new fleet and workers to spend more time making costly and time-intensive repairs in unsuitable conditions.

At Livonia, we’re evaluating different design options which would either reconfigure or completely replace the existing facility.

In either case:

» We must address all structural and component deficiencies.

» We must add more administrative and employee space, including offices, workshops, restrooms, and locker rooms—for employees of all genders—to ensure the space is a safe and dignified facility for our staff.

» We must install overhead cranes for removal and installation of HVAC units.

» We must reconfigure the tracks, so our employees have sufficient space to work between railcars and to access side-mounted equipment on the cars.

» We must minimize disruption. While we’re doing this work, we need to ensure parts of the facility remain operational so that we can continue to service trains.

» Finally, we must concurrently begin replacing the R62/R62A fleet.

As the R62/R62A cars (the older cars serving the 3) are approaching the end of their useful life, we will soon need to replace them to avoid increasing delays and service disruptions. We have plans to replace them with brand new railcars (referred to as the R262s), which would mean a more reliable, comfortable, and convenient ride for you. But we can’t do that unless we first update Livonia.

You might know the R62s as the railcars with the orange bucket seating. This is an interior shot of an R62 from 1983, the year they were introduced.

Newer R42 railcars on the 2 line feature brighter lighting, streamlined seating, upgraded HVAC, and digital route and destination signs.

Future R262s will replace the aging R62 and feature modern amenities like car-specific digital wayfinding, wider doors, advanced HVAC, and smoother braking.
In the early 1980s, commuter rail service north of New York City was at risk of falling apart entirely. After its original private operators’ 1970 bankruptcy and continued neglect from struggling Conrail throughout the 1970s, the system was trapped in a vicious cycle of disinvestment. Infrastructure was failing and service was suffering as a result.

In 1983, New York state stepped up and created the Metro-North Railroad. It was more than a change in name; Metro-North enacted an ambitious plan to restore the railroad’s basic infrastructure, requiring large-scale reinvestment in a system that was in severe disrepair. Early focus was on restoring basic infrastructure to reliable condition and working to achieve a state of good repair. This investment worked. Targeted investments in Metro-North’s infrastructure have had a dramatic effect on our service reliability: on-time performance was at 80.5% in 1983 and is now at 97.1% in 2022.

How the capital program saved Metro-North

Now, as Metro-North strives to maintain its accomplishments and provide reliable service to changing customer demands, much of its infrastructure remains largely as originally built and have met or exceeded the end of their useful life. Significant work remains on some vital aging assets that have deteriorated past the ability to continue with routine maintenance and must be substantially repaired, rehabilitated or replaced, such as the 130-year-old Park Avenue Viaduct and the 110-year-old Grand Central Train Shed. Much progress has been made over the years protecting past investments and providing targeted improvements; however, the state-of-good-repair needs of Metro-North’s infrastructure are significant and require investment to preserve the accomplishments of the past 40 years and to address the needs of the aging systems to allow Metro-North to continue to serve its tens of millions of riders each year.

Why it needs to again
Rebuilding an engineering marvel

We must rehabilitate vital and aging components of the Grand Central Train Shed and Park Avenue Tunnel and Viaduct, which make up the cornerstone of Metro-North operations, to promote a longer lifespan and reliable service for decades to come.

A once-in-a-generation rehabilitation

Ever taken a Metro-North train into Grand Central Terminal? If so, you’ve walked through one of New York’s most iconic buildings. But did you know that just beyond the building is an engineering wonder that’s just as impressive?

A network of underground tunnels, structures, and overhead bridges stretches approximately four miles and encompasses 75 acres, with 44 train platforms and 67 tracks for moving trains in and out of the terminal. Built more than a century ago, this collection of critical, connected infrastructure formed the Grand Central Artery, which helps approximately 200,000 Metro-North riders reach their destinations each weekday.

But most of this infrastructure was built for demands of a different era. Sections originally designed to hold up horse-drawn carriages now provide structural support for Park Avenue, its cross streets and sidewalks, and 24 high-rise buildings.

The structures have held up remarkably well, under pressures they were never meant to withstand. But now the Grand Central Artery—consisting of the Grand Central Train Shed, the Park Avenue Tunnel, and Park Avenue Viaduct—is finally showing its age. Deterioration is outpacing our attempts to fix it. Without more comprehensive, aggressive intervention, this could lead to failures resulting in suspension of all Metro-North service into Manhattan.

It is time to give the Grand Central Train Shed, Park Avenue Tunnel, and Park Avenue Viaduct the once-in-a-generation overhaul they need.

Grand Central Train Shed

Constructed over 110 years ago, the Grand Central Train Shed is the underground complex where trains entering the terminal are sorted to passenger platforms—just above the roof of the Grand Central Train Shed is Park Avenue and surrounding side streets.

Water infiltration from street level has led to pervasive rust and deterioration in the roof and structural support system, and the weight of trucks driving over the top of the Grand Central Train Shed along Park Avenue has compounded its damage. Corrosion and deterioration have outpaced the MTA’s ongoing targeted repairs since the 1990s.

To adequately address the needs, we must replace the existing roof structure with a new one that has a 100-year service life and a state-of-the-art waterproofing system to minimize and delay future corrosion. Without this kind of comprehensive intervention, the structure could fail, forcing a suspension of all Metro-North service into Manhattan.

Park Avenue Tunnel

After leaving Grand Central Terminal, trains pass through the Park Avenue Tunnel, a two-mile stretch running from 57th to 97th Street. This tunnel is also over a century old and needs updating to meet modern-day safety standards.

We have a comprehensive plan to improve it, including new emergency exits, better lighting, and a modern fire protection system, including upgrading our ventilation system.
Park Avenue Viaduct

The Park Avenue Tunnel then opens up onto the Park Avenue Viaduct, the approximately 1.7 mile-long elevated structure that carries 98% of all Metro-North trains to and from Grand Central Terminal each day. All Metro-North trains traveling along the Hudson, Harlem, and New Haven lines must travel on it to serve the Harlem-125 St Station and Grand Central Terminal, making it a single point of failure for the operation. Without it, Metro-North would not be able to provide service to Manhattan for riders from the Bronx, Westchester, Putnam, and Dutchess counties, or the state of Connecticut.

Over half of the viaduct was built in the 1890s, and it now carries considerably more trains each day than it was designed to support. Targeted repairs are not sufficient to address the extent of the structural deterioration; maintenance costs are increasing each year.

Half of the segments of the viaduct’s elevated steel structure running between E 110 Street and the Harlem River Lift Bridge are over 100 years old, necessitating regular maintenance and costly repairs.

We plan to replace or rehabilitate major segments of the Park Avenue Viaduct, with Phase 1 already underway from E 115 Street to E 123 Street.

We can modernize our infrastructure for faster, more reliable service sooner

By adopting a comprehensive approach and aligning with current industry design practices, we’re setting the stage for key improvements that are vital to the Metro-North rail system. These upgrades will make train service safer, faster, and more efficient for the thousands who rely on access to Grand Central Terminal and New York City every day.

We’re also utilizing innovative implementation strategies designed to cut down on construction time and minimize disruptions. For example, our Grand Central Train Shed replacement plan aims to finish 15-20 years ahead of schedule, saving both time and money while speeding up the use of more dependable infrastructure.

Tackling the needs of these three major, interconnected structures—the Grand Central Train Shed, Park Avenue Tunnel, and Park Avenue Viaduct—in a coordinated manner helps minimize service disruptions and secures the infrastructure for a more reliable system for years to come.
Since the first capital plan in 1982, we’ve made significant investments in the system—and it has made a difference. The graffiti-covered subway railcars are gone. Those trains could travel only 7,000 miles between failures; the railcars that replaced them (many of which are still in service) average 129,000 miles—and the newer ones can last more than 250,000 miles at their peak.

Investment matters. And even more so, *continuous investment matters*; we must continue with replacing assets as they become outdated and beyond their useful life.

New York’s future depends on keeping up with that investment. Aging assets demand increased maintenance attention, resulting in higher costs to keep them safe and operational and to avoid more disruptive shutdowns for repairs. Today, we have assets across all categories that are in poor or marginal condition that we must address, including 21% of subway station components, 32% of Metro-North bridges, and 52% of LIRR substations.

We can’t uphold our commitment to reliable service if critical components no longer function as intended.

Challenges

Every asset has its own lifecycle for replacement. Some assets may need replacing every 10 years, others every 20 years, and still others, every 100 years. During their functional years, these assets fulfill their purpose. However, as they age, they become prone to age-related wear-and-tear or even outright failure. This moment is approaching for a significant percentage of the system over the next 20 years.

Aging subway railcars

Over the next 20 years, over 3,900 railcars will reach the end of their useful life and will require replacement; nearly 1,500 railcars currently in operation are already past their 40-year limit.

Keeping up with railcar replacements is one of the most effective ways of ensuring reliable subway service. New railcars average over 200,000 miles between failures, making them more than 2.5 times as reliable as older “legacy” railcars. Older railcars are more prone to break down, generally require more extensive and costly maintenance to keep in service, and are less comfortable for our passengers due to worn interiors and malfunctioning equipment like air conditioning units. Nearly two-thirds of all August “hot car” incidents, involving air conditioning breakdowns over the past three years occurred in older railcars with underbody-mounted air units, compared to the newer ones with modern overhead AC units.

Necessary bus replacement

Each of our 5,840 buses gets replaced every 12 years. That means over the next 20 years, we will need to replace the entire fleet.
Deteriorating stations
With 704 subway and commuter rail stations, our transit network has more stations than any other subway or metro network in the world. Some of these stations are nearly 120 years old, and each station is made up of hundreds of components that need attention and are on different replacement cycles. The age and sheer size of our station footprint creates a huge maintenance challenge.

Elevated line structure corrosion
Our exterior steel infrastructure needs regular painting. This is not for aesthetic purposes. The paint on our outdoor structures, like our 61 miles of elevated subway structures and several hundred railroad overpasses, protects the steel against corrosion by providing a barrier from water and other weather-related damage.

More than half of LIRR bridges need to be repainted or waterproofed

<table>
<thead>
<tr>
<th>Asset</th>
<th>Percent in Poor/ Marginal Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undergrade Bridge (waterproofing)</td>
<td>69%</td>
</tr>
<tr>
<td>Culvert-Undergrade (painting)</td>
<td>69%</td>
</tr>
</tbody>
</table>

Suspension bridge preservation
The life of a suspension bridge is governed by the longevity of its main cables, which are the primary load-carrying elements for a suspension bridge and are extremely difficult and cost-prohibitive to replace.

Cable dehumidification is a proven technique used worldwide to minimize corrosion and preserve the remaining strength of main cables by reducing the relative humidity levels within the cables.

Implementing cable dehumidification on our four suspension bridges is one of our highest priorities.
What we’ve done

New York City Transit

Fleet upgrades
New R211 railcars are in service, the first of the 1,175 new railcars that will be deployed across the subway and SIR over the next few years. These new railcars feature wider door openings, digital displays, CCTV, and other modern amenities and are equipped with the technology required for a modern signal system.

Station improvements
In the current five-year capital plan, we are repairing over 1,400 subway station components including stairs, platforms, canopies, mezzanine components, and station ventilators.

We are also renewing 78 station elevators and 66 escalators to keep this equipment available over 95% of the time.

Long Island Rail Road

Station improvements
Over the last five years, we have completed vital repair and rehabilitation work at 20 LIRR stations—with more underway. This work includes platform replacements, station building renovations, pedestrian overpass improvements, and installation of new customer amenities like digital screens and platform shelters.

Bridges and Tunnels

Cable dehumidification
We are protecting the main cables at the Robert F. Kennedy Bridge and the Verrazzano-Narrows Bridge against future corrosion.
Our 20-year plan

By keeping up with our replacement needs, we can avoid the cycle of deterioration, breakdowns, and emergency action—and reap the benefits of safe, consistently reliable, and convenient service.

Highlights include:

1. **Replace aging fleets**
 We need to replace eight railcar types totaling over 5,000 railcars for NYCT, Metro-North, LIRR and purchase 9,000 buses over the next 20 years.

New York City Transit

Subways
We must complete the replacement of all "legacy" subway railcars built prior to 2000. Continuing to transition to our newest railcars, which have equipment malfunctions a fraction of the time compared to older ones, as well as have improved features like wider doors to expedite boarding, security cameras, digital information displays, and automated announcements is important. Modernized railcars are also essential to the rollout of a modernized signal system.

Buses
We must transition our entire bus fleet to zero-emissions by 2040, significantly reducing greenhouse gas emissions. The new fleet will also feature digital information screens and other modern technology to enhance safety and customer experience.

Long Island Rail Road
We must purchase up to 340 new railcars to expand the fleet and replace old ones so that the entire passenger railcar fleet is within its useful life. Expanding the fleet will allow us to provide more travel options and run service to match the expected changes in ridership demand caused by the opening of Grand Central Madison and the boost in "reverse peak" service that is possible with the recent completion of the Main Line Third Track expansion project.

Metro-North Railroad
We must replace aging locomotives, coaches, and railcars by purchasing over 750 new vehicles, including up to 15 new locomotives for West-of-Hudson service, all while preparing for expansion of service from the New Haven Line into Penn Station. With these investments completed, all revenue equipment would be within their useful life.

To see the full plan, please visit future.MTA.info
Prolong the lifespan of our structures

» We must complete painting all 61 miles of elevated steel subway structures and repairing thousands of priority structural defects that will help our structures last longer.

» We must dehumidify the main cables of the Bronx-Whitestone Bridge and Throgs Neck Bridge to preserve their strength.

Upgrade stations

» We must implement station repair projects quickly when deteriorated components or other needs are identified so that we expedite fixing our stations in a shorter timeframe and improve our customers’ experiences.

» We must enhance security by improving lighting, CCTV, and other station elements.

» We must improve circulation within selected stations by adding stairs or reconfiguring station elements.

» We must address degraded station electrical utility conditions and upgrading station lighting.

» We must rehabilitate or replace aged, deteriorating station components, including platforms at 70 stations and 160 elevators throughout the LIRR and Metro-North systems.
If you’ve ever taken the D train through Brooklyn’s Borough Park, New Utrecht, Bensonhurst or Coney Island neighborhoods, you might have noticed the elevated steel structure holding up the tracks has seen better days. Peeling paint flakes along all 3.6 miles of the century-old structure, known as the West End Elevated, revealing rusted and corroded steel with warped surfaces and cracked foundations.

While we inspect these structures regularly to ensure that they remain safe and structurally sound, without intervention the deterioration will continue, leading to large, costly, and disruptive repairs or worse—a partial service shutdown while we install a full replacement.

Luckily, the solution to prolong its life is surprisingly simple: a new coat of paint.

Steel structures are vulnerable to corrosion or rusting from everyday exposure to the air, rain, snow, and salt water, where it exists. The stress of holding up continuous trains running along the tracks can cause additional deterioration. Without intervention, the combination of weather damage and daily usage can result in serious structural defects.

But, well-maintained exterior paint can provide significant protection—in some cases even doubling the lifespan of the infrastructure. It also has the added benefit of creating a cleaner, more vibrant look for the communities these lines serve.

To protect New York City Transit (NYCT), Long Island Rail Road (LIRR), and Metro-North Railroad (Metro-North) structures, we have a plan to paint—and regularly repaint—our exposed structures to prevent long-term damage and even more expensive corrective work.

Over the past few years, we have overhauled our approach to painting our transit infrastructure, incorporating new techniques and materials to make these protections even more effective.

That’s in part thanks to a new level of interagency collaboration, facilitated by the 2019 formation of the MTA Construction and Development (C&D) agency, which brought experts from all agencies under one roof to share best practices.

Our Bridges and Tunnels (B&T) division has had a robust and advanced painting program in place since the 1990s when they undertook a significant upgrade of their painting program. This effort dramatically reduced the level of deterioration across our seven vehicular bridges and two vehicular tunnels.

Now, MTA C&D has begun applying that knowledge and expertise to improve how we care for our bridges and elevated structures on the subway and regional railroads, too.

This includes using better performing and more varied sets of coatings, enabling us to tailor our approach to the specific environmental conditions. It also involves new and more efficient methods for stripping old paint, cleaning and prepping structures, and applying new coats of paint. Combined, this helps us more than double the service life of our structures without major reconstruction.
How are we doing better?

By taking a new approach to structural overcoat painting:

- Our steel structures will corrode less quickly, preventing serious safety concerns and very costly repairs or even the full replacement of a structure. This will save customers from delays or service cancellations for lengthy periods of time while a structure is repaired or replaced.

- Our new coatings have a better bond with the structures, helping increase the painting cycle from every 15 years to every 30. Because the new materials are more in line with industry standards, there is more competition for the work, allowing us to find more competitive pricing. Both mean better-quality work at a lower overall price.

- In some cases, we must remove old lead-based paint which can pose health risks. Safely removing it from very old structures and replacing it with more environmentally friendly epoxy paints has real public health benefits for the communities these lines serve.

- We've applied B&T's approach to abrasive blasting to remove aging paint from our subway structures. These blasting rates are 4x higher than our previous power tool cleaning rates, and because abrasive blasting cleans steel more effectively than power tools, steel defects can be better identified for repair extending the structural service life.

We have a plan

The MTA has a plan for leveraging the power of paint to preserve our structures over the next 20 years and avoid costly repairs and disruptions.

Almost half of the subway’s 61 miles of elevated line structures have been or will be painted in the current 2020-2024 Capital Plan. We will continue painting and recoating using high-performance paint over the next 20 years. We are integrating painting efforts with other major projects to accomplish multiple improvements at once, reducing overall costs and minimizing disruptions.

Our work also extends out to the commuter rail network. Over the next 20 years, LIRR will paint and waterproof up to 100 bridges and viaducts in greatest need of rehabilitation or replacement to prevent accelerated structural deterioration. Meanwhile, Metro-North is replacing and rehabilitating many of its underground and overhead bridges, including painting and waterproofing projects.
MTA Bridges and Tunnels was established in 1933 as the Triborough Bridge Authority. Today, B&T is among the largest of the nation’s bridge and tunnel tolling authorities, in terms of revenue and traffic volume, operating seven bridges and two tunnels in New York City, connecting the boroughs of Manhattan, Brooklyn, Queens, the Bronx, and Staten Island. These bridges and tunnels are essential links for both regional traffic corridors and major truck routes and serve a vital role in the operation of bus/HOV traffic operations within NYC. In 2022, B&T collected more than $2.3 billion in toll revenue. With over 60% of this toll revenue dedicated to the MTA’s mass transit operations, B&T performs a unique and vital function in support of regional mobility.

Thanks to a steady pace of capital investment over the past several capital programs, B&T’s bridges and tunnels are currently in good condition. In addition, B&T constantly makes improvements to its bridges and tunnels to improve regional traffic flow and safety, improve accessibility on its bridges, improve resiliency for both its structures and supporting infrastructure, and addresses any known risks such as seismic, fire, wind, vessel impact, and security. This has resulted in the upgrade and modernization of a significant portion of B&T’s bridges and tunnels as well as supporting infrastructure.

B&T requires continuous capital investment to maintain its aging bridges and tunnels in good condition, upgrade remaining original components, improve accessibility, implement sustainability initiatives, and adapt to evolving regional traffic patterns, new codes, and technology, while maintaining an uninterrupted revenue stream to support the MTA and mass transit.
To reach our region’s potential, we will need a transit system that can meet the needs of 21st century riders. We must modernize some of our outdated and deteriorating infrastructure to create a system that is more efficient, reliable, and easier to navigate. By making these foundational investments, we can prepare our network for its next century of service.

Modernize

Today, we are using signal technology developed during the days when radio was considered cutting-edge, created decades before the invention of the internet.

Some of our technology is so old that its components are no longer manufactured, forcing the MTA to painstakingly craft its own replacement parts. By modernizing the grossly outdated and wildly inefficient parts of our system, we can avoid breakdowns and support safer, more reliable service. Two particularly important systems we need to modernize are signals and communication technology.

Challenges

Modernize

To reach our region’s potential, we will need a transit system that can meet the needs of 21st century riders.

We must modernize some of our outdated and deteriorating infrastructure to create a system that is more efficient, reliable, and easier to navigate.

By making these foundational investments, we can prepare our network for its next century of service.

Modernize

Today, we are using signal technology developed during the days when radio was considered cutting-edge, created decades before the invention of the internet.

Some of our technology is so old that its components are no longer manufactured, forcing the MTA to painstakingly craft its own replacement parts. By modernizing the grossly outdated and wildly inefficient parts of our system, we can avoid breakdowns and support safer, more reliable service. Two particularly important systems we need to modernize are signals and communication technology.
Communication technology

Providing information about train arrivals, service changes, or other important messages has become a standard our customers expect. But currently, just over half of our stations can deliver this information effectively due to outdated systems.

Communication technology becomes obsolete faster than other assets due to rapid technological advancement and innovation. That means that while other assets have a typical lifespan of 25-50 years, communication assets tend to have a shorter lifespan of 10-15 years.

Though each technology has different challenges and vulnerabilities, as well as compatibility requirements, updating them is essential. In addition to informing customers, this infrastructure also facilitates clear and timely communication between train operators, control centers, and station personnel. It is also critical in emergency response situations.

Modernization

Communication technology

Subway signal modernization has been fully completed on the L and 7 lines. Since the upgrades, they have become our highest performing lines, both consistently exceeding 90% on-time performance.

Modernization is also completed on portions of the EFMR (Queens Boulevard West) and currently underway on the Culver F, 8 Avenue A C E, and Crosstown G lines.

Plans are underway to award signal modernization projects on the Fulton A C, 6 Avenue B D F M, and 63 Street F lines by the end of 2024.

Communication upgrades

We have been making advances in rehabilitating and upgrading communication assets across our subway system. Our 2020-2024 Capital Program included a 97% increase in funding for communication infrastructure over the previous capital program.

We are currently rolling out connection-oriented ethernet (COE) across the system. This will enable us to upgrade security and communications capabilities.

More than half of NYCT subway stations have public address systems in poor or marginal condition

<table>
<thead>
<tr>
<th>Asset</th>
<th>Percent in Poor/Marginal Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Address/Customer Information Screen</td>
<td>52%</td>
</tr>
</tbody>
</table>

LBRR updated platform screens
Our 20-year plan

We will embrace changes that improve service and reliability into the next century.

Highlights include: Modernize signals

We must modernize our signaling system across the MTA system. Updating signals is one of the most important things we can do to improve service reliability, reduce delays, and allow us to increase train service in the future if needed. For the subway system alone, this means improvements to 315 miles of signals.

» We must expand modernized signaling from approximately 234 signal miles (already complete or underway) to 549 total signal miles, resulting in improved service for about 90% of riders.

» We must upgrade the entirety of Metro-North’s Harlem and Hudson lines to operate with next generation signal systems. This means replacing over 150 route miles of outdated signal system assets, installing next generation train supervision systems, and building a modernized Operations Control Center.

» We must modernize approximately 50 miles of signaling and complete the installation of signal and communication systems to provide LIRR passengers with better and more timely information.
To see the full plan, please visit at future.MTA.info

Update customer communication technology

» We must upgrade our communication systems across our network so riders can plan their trips and their days with confidence, thanks to easy-to-read digital screens and audio announcements that are clear and easy to understand.

» We must modernize customer communication systems so that all stations have public address systems and customer information screens that can broadcast clear and accurate information to all riders.
As you're riding the subway, you've likely encountered a variety of speakers, signs, and screens in our stations and on our platforms. These components are part of our Public Address and Customer Information System (we call this PA/CIS), and they help our employees share important information with passengers on service changes and critical emergency instructions. They also help us provide riders with real-time train arrival and departure times and help passengers navigate the subway system and make informed decisions about their travel.

When we installed the first public address systems in our stations in the early 20th century, they were rudimentary compared to today’s standards. The early systems relied on basic amplification and loudspeakers, offering limited clarity and range in announcements. Without digital displays, passengers depended solely on audible announcements, which posed challenges for those with hearing impairments or in noisy stations. Technology has changed a lot since then and we’ve made a lot of updates over the years but we haven’t been updating our stations consistently. In some stations, we still operate technology that became obsolete decades ago, while others have more modern PA/CIS setups with advanced audio equipment for clearer announcements and digital displays for real-time updates and station navigation aids.

All of this information comes from what we call the Rail Control Center (RCC), a single location which serves as the central command for all trains. The RCC oversees operations of our trains and handles routing and dispatching, train tracking, and manages disruptions or delays that may occur. In emergencies or unexpected issues, they make quick decisions to maintain safety and efficiency. In an ideal scenario, The RCC would be able to quickly and automatically send information on service changes and disruptions to passengers waiting in stations, but this is not the case at a lot of our stations.

Right now, we’re effectively operating at least three different generations of PA/CIS technology in our stations. 76 subway stations still rely on communications infrastructure that has not been updated in 40 years. These stations do not have a direct connection to the RCC and customers who use these stations receive announcements from station agents or nearby announcers who receive their information second-hand through verbal contact with workers at the RCC. This game of telephone leads to poor and delayed information to our customers and worse, these announcements are not at all connected to any of the station countdown clocks or visual signage infrastructure, which can result in irrelevant or even conflicting information.

We’re working to bring all of our stations up to the newest generation of PA/CIS so that riders at all stations can hear and see announcements directly from the RCC, ensuring all riders get the most up-to-date information from the source in real time.
Rebuild

80-81

Affordability
Keeping our fares affordable is an important part of making the transit system as accessible to all as possible. When our system is in good physical condition, it means fewer operating dollars need to be spent to constantly fix broken parts. When we spend fewer operating dollars, it means there is less pressure on fares.

Service
Rebuilding the MTA’s aging assets—from structures to shops to substations—is essential to ensuring a safe, reliable transit network for the New York region. A robust and efficient transit system is the key to connecting all communities—but particularly those who have been the most underserved—to employment, education, and healthcare.

Equity
New York as a whole depends on the MTA, to access jobs and basic needs (85% of jobs are within walking distance from rail and subway) but this is especially true in historically marginalized communities, where high concentrations of low-income, minority, and transit dependent populations live, and auto ownership is low. In New York City, the average percentage of zero-vehicle households in Equity Areas is 65%, compared to 29% in non-Equity Areas.

This means that investments we make to rebuild the system, ensuring its reliability and longevity, are also equity investments. The converse is also true—if we fail to invest in rebuilding our system, the delays and disruptions will hit disadvantaged communities the hardest.

Reliability
We know how important it is to deliver for our riders that most depend on reliable service, and we take that seriously in our planning. This includes prioritizing investment in reliability—key among them modernizing our antiquated signals system—for subway lines that serve communities that are most transit reliant. For the 2020-2024 Capital Program, this means we advanced signaling upgrades to improve on-time performance and reduce delays on the A/C Fulton Line and the G Crosstown Line.
Our mandate has grown to meet changing needs. A lot has changed since the transit network was first created more than a century ago. Although the system has remained remarkably vital and essential to the region’s success, it was not designed to meet the needs of today’s riders.

It is time to accelerate our progress and bring our infrastructure into the 21st century, driven by our modern values of accessibility, resilience, sustainability, and innovation.
The original design of our century-old stations excluded too many people because it did not fully account for the diverse needs of our riders. We are now on course to change that and can make tremendous progress in the next 20 years if the MTA’s capital plans are adequately funded.

In 2022, the MTA announced an agreement alongside accessibility advocates that reaffirms our commitment to systemwide subway accessibility and provides a clear path and timeline to get there. The subway accessibility plan will make at least 95% of our subway stations accessible by 2055.

We are also continuing to work toward improving accessibility on our commuter rail stations by building new elevators and ramps, and replacing old ones.

For example, in order to make our subway stations accessible, we face three challenges:

1. **A vast undertaking**

 With 493 stations, New York City has more subway stations than any subway or metro system in the world. Our vast network is a boon to most riders, but the sheer size of the network means maintaining and upgrading our system to modern standards for accessibility is an enormous undertaking, especially coupled with historic system disinvestments that we are working to overcome. We’ve made a lot of progress, having made 142 stations throughout the five boroughs ADA-accessible (as of Sept., 2023), but that is only about a quarter of our 493 subway and SIR stations.
20-Year Needs Assessment

Improve

Accessibility

Challenges

What we’ve done

Our 20-year plan

No cookie cutter solutions

Space for new elevator shafts and equipment, or for ADA-compliant ramps, is limited in the close quarters of subway stations and in the dense street environments where subways run. Typically, subway stations are surrounded on several sides by existing buildings and above or below busy streets. Throughout the past 100 years, a complex web of underground utility lines has grown around the subway system, and these utilities sometimes must be relocated. In addition, the station’s structure has to be modified—cutting holes in concrete floors and metal beams to make room for the elevator shafts and machinery. For these reasons, each new accessibility project is a major undertaking that must be designed and constructed to a station’s individual constraints.

Logistically challenging

These projects require a tremendous amount of intra- and inter-agency planning, as well as extensive coordination with several public utilities, the New York City Department of Transportation for impacts to city streets, the New York City Parks Department any time we touch public park land, private property owners, and many other external stakeholders. We strive to minimize construction impacts to our riders and to the neighborhoods where work is taking place, but we’re committed to getting the work done—and doing it the right way—and that takes time, effort, and collaboration.

New York City Transit

We have already begun making historic progress in the current capital plan. When completed, this program of investments will deliver 67 new accessible subway stations, more than were completed in the last three capital programs combined. This pace sets the tone for investments in future capital plans over the next 20 years.

Since 2020, we’ve awarded ADA projects at 36 subway stations. Another 16 are forecast for award by the end of 2023, and another 29 are funded in the current capital program and are scheduled to be awarded in 2024 or soon after.

Long Island Rail Road and Metro-North Railroad

Currently 84% of full-service LIRR and Metro-North stations are fully accessible, and we are improving accessibility at 11 more stations under the current capital program.

Bridges and Tunnels

MTA B&T has already made significant progress toward improving bicycle and pedestrian access on our bridges in the current and previous capital programs. Once the current program is completed, the lower level of the Henry Hudson Bridge will have an ADA-compatible shared use path, as will the Cross Bay and the Robert F. Kennedy Queens Suspension bridges. Other portions of the Robert F. Kennedy Bridge complex will have been upgraded to have ADA-compatible shared use paths as well, including a newly completed bicycle/pedestrian ramp connecting the Harlem River Lift Span to the future Manhattan Greenway.
How we select subway stations for accessibility upgrades

When determining which stations to include in each capital planning cycle, by statute we consider the following factors:

- **Coverage**: A critical strategy for increasing accessibility across the subway system is to reduce gaps in coverage—in other words, to reduce the number of stops between accessible stations. This way, customers in neighborhoods across the city are never too far from an accessible station.

- **Destinations**: Participants in our public meetings have given us input on local preferences and priority destinations in their communities, such as schools, parks, retail, cultural hubs, medical centers, and other community institutions served by different subway stations.

- **Demographics**: To ensure that accessibility investments reach communities with the greatest need, the MTA gathers data on the populations of seniors and people with disabilities, and the socioeconomic status of neighborhood residents surrounding each station.

- **Ridership**: Within the framework of increasing geographic equity and systemwide coverage, we consider which stations could serve the greatest number of customers. We also consider which neighborhoods are growing.

- **Transfers**: Making the subway system’s major transfer points accessible helps customers travel more seamlessly throughout the region. This includes subway stations that are transfer points between subway lines, as well as stations that are major connection points to bus or commuter rail lines.

- **Constructability and cost**: The cost and time required to retrofit a station can vary dramatically based on site conditions. By considering project costs and complexity in our selection process, we can extend the reach of our accessibility investments and more quickly deliver benefits to our customers.

To see the full plan, please visit future.MTA.info.
Accessible infrastructure

In addition to creating step-free access to trains, we will also make other accessibility improvements like upgrading tactile warning strips on platform edges, raising platforms so they are more level with train doors, and working to install fare payment gates that allow for easier access for customers with mobility devices, luggage, or strollers. Building off of existing and past pilots, we also plan to add accessibility features that improve customer wayfinding and the reliability of the accessible path of travel. Compliance with the ADA is a minimum standard, and we look to go above and beyond the ADA as we modernize the system in the next 20 years.

At Bridges and Tunnels, we will advance accessibility improvements like a shared use path on the RFK Bridge’s Harlem River Lift Span, making the Manhattan to Randall’s Island connection a fully ADA-compliant path from end to end.

Renew existing elevators and escalators

Even as we add new elevators, we must also continue addressing existing elevators that need replacement. The large expansion of the station accessibility program over the next 20 years will ultimately lead to a doubling of the lifecycle replacement needs by the 2040-2044 timeframe; for example, over 350 subway station elevators will be due for replacement over the next 20 years.

Efficient and cost-effective upgrades

Our plan bundles these upgrades with planned station repairs to make the process as efficient and cost-effective as possible. Additionally, we will continue collaborating with the private sector to make our network more accessible more quickly. In New York City, we’re taking advantage of Zoning for Accessibility, which requires developers of sites adjacent to stations to work with us to provide an easement on their site if we can use it for future station entrances, such as elevators and stairs, and includes incentives for developers of eligible properties to build station accessibility improvements at no cost to the MTA in exchange for more density in their developments.
We are working to bridge accessibility gaps

With the addition of ADA elevators at Brownsville, Brooklyn’s Livonia Av station in 2022, we filled a major gap in the accessibility of our subway network and for transit users in New York City. Previously, subway riders in Brownsville and surrounding neighborhoods had to travel more than a mile to reach an accessible station. That meant longer and more complicated trips for riders who use mobility devices, or travel with children in strollers, in a predominantly low-income area where commute times were already long.

Demographics

To ensure that accessibility investments reach communities with the greatest need, the MTA gathers data on the populations of seniors and people with disabilities, and the socioeconomic status of neighborhood residents, surrounding each station. Livonia Av serves the neighborhoods of Brownsville and East New York, both of which have a high percentage of residents living in poverty, and both of which are majority minority communities.

Network coverage

A critical strategy for increasing accessibility across the subway system is to reduce gaps in coverage—in other words, to reduce the number of stops between accessible stations. This way, customers in neighborhoods across the city are never too far from an accessible station. Prior to this project, there was a gap of 10 stations between the Canarsie-Rockaway Pkwy station (the terminal of the L line in Brooklyn) and the next fully accessible station at Myrtle-Wyckoff Avs. After the completion of this project and others in the MTA’s 2020-2024 Capital Program, those gaps will be greatly reduced with five more accessible stations on the L line in Brooklyn alone.

We are undertaking a historic effort to redesign the system to meet the needs of all riders

Livonia Av is one of dozens of stations with accessibility projects either recently completed or in progress. This station fit several of the criteria we consider when determining which station accessibility projects to prioritize.

Transfers

Making the subway system’s major transfer points accessible helps customers travel more seamlessly throughout the region. This includes subway stations that are transfer points between subway lines, as well as stations that are major connection points to bus or commuter rail lines. This project is the first step in upgrading the transfer between the Livonia Av and Junius St stations, with the Junius St Station to be made accessible and an in-system transfer between the stations to be built in the 2020-2024 Capital Program.

In addition to these criteria, we also consider ridership, community input on what destinations are most important, as well as constructability and cost.
Each project is an extensive undertaking

Each project to bring accessibility to our stations is a major challenge, and no two projects are alike. We need to find space in dense environments—both on the streets and within the stations—to locate elevator shafts, reconstruct structural elements of stations, and relocate critical underground utilities. All while keeping the station open and trains running.

At Livonia Av, we made the station accessible by installing a steel elevator structure along with two new elevators, a walkway overpass, high-level platforms, and accessible fare gates. This project was both very challenging and unique to design and construct. Livonia Av is an elevated station that directly abuts a freight railroad right-of-way, so it was not possible to build an elevator that rises up from the street or mezzanine to the southbound platform, the usual configuration for elevated stations. Because of the layout of this station and its unique space constraints, the elevator to the southbound platform actually comes from above the platform, which passengers access via a new elevated overpass that crosses over the tracks and connects to the northbound side of the station.

There’s more to come

Livonia Av is just one of the accessibility projects we’ve completed in recent years. Across the system, 142 subway and Staten Island Railway (SIR) stations are currently ADA-accessible in at least one direction. Since 2020, we’ve awarded ADA projects at 36 stations, another 16 are forecast for award by the end of 2023, and another 29 are funded in the current capital program and will be awarded in 2024 or soon after.
Climate change is here—and we must prepare. Over the next two decades, climate change projections indicate that the New York region will experience more frequent and intense coastal storms, more than twice the current number of torrential rainfall events, and triple the current number of extreme heat days over 90 degrees. Meanwhile, sea levels will rise approximately 2.5 feet by the 2050s and almost five feet by the 2080s.

Our infrastructure was not built to withstand future climate conditions. We’ve made significant progress retrofitting, renovating, and rebuilding infrastructure in anticipation of future climate conditions, but climate change won’t wait for us to finish. For our systems to keep running as lifelines through the coming climate-induced crises, we must move faster.

Over the next 20 years and through the end of the century, climate change vulnerabilities will permeate every MTA system.

We will work to minimize the impacts of extreme weather events on the safety of our riders and workforce, on service reliability, and on infrastructure. The scale and urgency of the task will transcend capital, operational and emergency planning functions across the MTA.

Subways
Over 400 miles of subway tracks are below grade and potentially exposed to inland floods caused by torrential rainfall.

Torrential rain can flood tracks through vents, stairs, and other openings, causing damage to electrical equipment and service disruptions.

Above-ground tracks can expand during heat waves with sustained temperatures above 90 degrees, posing derailment risks and speed restrictions.

Metro-North Railroad
Around 50% of the Hudson Line is in the FEMA floodplain today. Flood exposure will grow over time as sea levels rise, surface runoff from adjacent properties increases, and as coastal storms become more frequent and intense. At the same time, inland floods caused by torrential rainfall at critical locations, such as Mott Haven Yard in the Bronx, are already disrupting East-of-Hudson services at least once a year.
What we’ve done

Since Superstorm Sandy, we’ve invested more than $7.6 billion in repairs and in entirely new classes of climate resilience infrastructure to protect from powerful coastal storms.

When Superstorm Sandy hit the region in 2012, the coastal storm surge flooded 58 miles of subway track, the Queens Midtown and Hugh L. Carey tunnels, three bus depots, and other infrastructure. Sandy impacts cumulatively caused $5 billion in infrastructure damage and lost revenue across all MTA agencies.

Investments undertaken include perimeter flood walls, marine doors, and vent closure devices. Both LIRR and Metro-North advanced extensive programs to rebuild and replace damaged equipment. At the same time, repaired equipment was elevated above the coastal floodplain to reduce exposure to future surge events.

As regional climate change projections are updated with greater levels of certainty, the scale and breadth of climate change impacts on MTA systems is emerging. Going forward, the MTA will incorporate climate risk information into capital plans and project designs to proactively reduce climate risk exposure.

Long Island Rail Road

Stations like East Rockaway, Oyster Bay, Island Park, Douglaston, and Oceanside are susceptible to flooding during torrential rainfall. These same stations may also experience regular tidal flooding shortly after the 2050s due to sea level rise.

Flooding at Babylon Yard

Buses

Depots like Castleton, Michael J. Quill, Yukon, and Grand Ave are vulnerable today to inland flooding caused by torrential rainfall. Inland flood risks will expand to more depots by the 2050s.

NYCT buses during Superstorm Sandy

Bridges and Tunnels

Bridges and tunnels are vulnerable to flooding. Stormwater drains, both on and off property, are no longer capable of handling the torrential rainfall events that are occurring on a regular basis, leading to flooding events that impact traffic flow. An example of this is the regular flooding of the Cross Island Parkway approach to the Throgs Neck Bridge.

Throgs Neck Bridge

Hugh L. Carey Tunnel entrance
Our 20-year plan

Over the next 20 years, we will advance climate resilience strategies to reduce exposure before impacts occur.

Install new climate resilience protections

We will install new climate protections to reduce climate risk exposure before impacts occur. For example, locations such as Metro-North's Hudson Line and Mott Haven Yard, NYCT’s Westchester Yard, and Castleton Depot are locations facing current challenges that will likely require dedicated climate protection infrastructure.

Incorporate climate-resilient design strategies

We will incorporate climate-resilient design strategies into capital projects. This approach will inform the scope and performance requirements of capital projects and enable us to design risk mitigations that correspond to the asset’s useful life.
Engage partners to address climate vulnerabilities

We will engage partners to address climate vulnerabilities in areas where successful mitigations extend beyond locations under our jurisdiction.

Staten Island Mill Creek Bluebelt

The Mill Creek Bluebelt, recently completed by the New York City Department of Environmental Protection (DEP), reduces tidal flooding risks on the SIR that runs over the waterway. DEP’s Bluebelt system manages stormwater by restoring or expanding natural drainage systems to divert flood waters from surrounding areas. Flooding interrupts service south of Huguenot several times a year. Bluebelts not only benefit the passengers who rely on MTA service, they also bring ecological habitat and neighborhood stormwater management co-benefits.

Leverage future-facing climate change projections

Finally, we will normalize the use of future-facing climate change projections to proactively assess the multiple risks facing our assets, including increasing temperatures, torrential rain, sea level rise, coastal storms, and other emerging hazards. We will complement climate change projections with on-the-ground observations and data from remote equipment, such as flood and temperature sensors, to investigate how climate change is impacting our assets, to evaluate potential mitigation options, and to deploy the most effective strategies.

To see the full plan, please visit future.MTA.info.
South Ferry Station after Superstorm Sandy

More must be done

When our subway system was built in 1904, it was not designed to withstand the extreme weather events we experience today. As a result, we have widespread vulnerabilities to a growing range of climate threats, including torrential rainfall and prolonged heat. And these risks are only growing. By the 2050s, climate change projections indicate that New York City will experience more than twice the current number of torrential rainfall events and triple the current number of extreme heat days over 90 degrees.

That’s why we must act now to protect against the threats we know are coming. We have developed plans to address the extreme weather events our city will face in the years ahead.

Working to withstand stormwater floods from torrential rainfall

A total of 418 of New York City’s 665 miles of subway track are underground. When stormwater from average rainstorms (that produce less than 1.75 inches of rain per hour) enters the underground subway system through openings like street vents and stairways, it travels through a complex underground hydraulic system. This system of drains, drain lines, and pumps connects to the city’s sewer system to drain the stormwater and keep the system dry.

However, during torrential rainfalls, stormwater can collect on the street and inundate our underground system, flood stations and track, and damage critical infrastructure like communication and electrical equipment. For example, in August 2007, when roughly 3.5 inches of rain fell in parts of Brooklyn and Queens over a two-hour period, it caused a shutdown of subway service.

More recently, in September 2021, Hurricane Ida brought a record 3.15 inches of rainfall in one hour and a total of 6-8 inches of rainfall in some locations across New York City, causing critical damage and service suspension across the system.

In response, we installed new mitigation measures, like raised stairway landings, raised vents, and flash flood mechanical closure devices, across stations that are vulnerable to torrential rainfall flooding.

Over the next 20 years, we will continue investing in these “passive” protection measures, which do not require special deployment but begin working as soon as rainfall begins. We will also invest in increasing pumping capacity and sump pit detention capacity across the system to reduce the amount of stormwater draining to the city’s overwhelmed sewer system.

Preparing the subway system for climate change

In the years since Sandy, the MTA has invested $7.6 billion in repairs and new coastal flood protections across all of our systems, including over $340 million in repairs and coastal storm surge protections alone at South Ferry. These coastal storm protections, like marine doors and vent closure devices, are designed to protect the subway system and reduce the risk of catastrophic flooding from storm surge, which will be exacerbated in the coming years by sea level rise.

Extreme weather poses significant subway system risks

On the evening of Oct. 29, 2012, Superstorm Sandy made landfall and soon began battering New York City with winds of 80 miles per hour and a storm surge over 14 feet. The following morning, about 17% of New York City was flooded. Our subway system was not spared. South Ferry Station, which carries more than 30,000 riders on an average weekday, was flooded nearly up to the ceiling. When the waters receded, the station was completely destroyed. Similar stories were repeated across the city.

It was a painful lesson. Climate change is here, and we must be prepared.

We’ve responded to protect the system

104

South Ferry Station after Superstorm Sandy

Subway Resilience Case Study

Resilience: Case Study

South Ferry Station after Superstorm Sandy

More must be done

When our subway system was built in 1904, it was not designed to withstand the extreme weather events we experience today. As a result, we have widespread vulnerabilities to a growing range of climate threats, including torrential rainfall and prolonged heat. And these risks are only growing. By the 2050s, climate change projections indicate that New York City will experience more than twice the current number of torrential rainfall events and triple the current number of extreme heat days over 90 degrees.

That’s why we must act now to protect against the threats we know are coming. We have developed plans to address the extreme weather events our city will face in the years ahead.

Working to withstand stormwater floods from torrential rainfall

A total of 418 of New York City’s 665 miles of subway track are underground. When stormwater from average rainstorms (that produce less than 1.75 inches of rain per hour) enters the underground subway system through openings like street vents and stairways, it travels through a complex underground hydraulic system. This system of drains, drain lines, and pumps connects to the city’s sewer system to drain the stormwater and keep the system dry.

However, during torrential rainfalls, stormwater can collect on the street and inundate our underground system, flood stations and track, and damage critical infrastructure like communication and electrical equipment. For example, in August 2007, when roughly 3.5 inches of rain fell in parts of Brooklyn and Queens over a two-hour period, it caused a shutdown of subway service.

More recently, in September 2021, Hurricane Ida brought a record 3.15 inches of rainfall in one hour and a total of 6-8 inches of rainfall in some locations across New York City, causing critical damage and service suspension across the system.

In response, we installed new mitigation measures, like raised stairway landings, raised vents, and flash flood mechanical closure devices, across stations that are vulnerable to torrential rainfall flooding.

Over the next 20 years, we will continue investing in these “passive” protection measures, which do not require special deployment but begin working as soon as rainfall begins. We will also invest in increasing pumping capacity and sump pit detention capacity across the system to reduce the amount of stormwater draining to the city’s overwhelmed sewer system.

Preparing the subway system for climate change

In the years since Sandy, the MTA has invested $7.6 billion in repairs and new coastal flood protections across all of our systems, including over $340 million in repairs and coastal storm surge protections alone at South Ferry. These coastal storm protections, like marine doors and vent closure devices, are designed to protect the subway system and reduce the risk of catastrophic flooding from storm surge, which will be exacerbated in the coming years by sea level rise.

Extreme weather poses significant subway system risks

On the evening of Oct. 29, 2012, Superstorm Sandy made landfall and soon began battering New York City with winds of 80 miles per hour and a storm surge over 14 feet. The following morning, about 17% of New York City was flooded. Our subway system was not spared. South Ferry Station, which carries more than 30,000 riders on an average weekday, was flooded nearly up to the ceiling. When the waters receded, the station was completely destroyed. Similar stories were repeated across the city.

It was a painful lesson. Climate change is here, and we must be prepared.

We’ve responded to protect the system

104

South Ferry Station after Superstorm Sandy

Subway Resilience Case Study

Resilience: Case Study

South Ferry Station after Superstorm Sandy

More must be done

When our subway system was built in 1904, it was not designed to withstand the extreme weather events we experience today. As a result, we have widespread vulnerabilities to a growing range of climate threats, including torrential rainfall and prolonged heat. And these risks are only growing. By the 2050s, climate change projections indicate that New York City will experience more than twice the current number of torrential rainfall events and triple the current number of extreme heat days over 90 degrees.

That’s why we must act now to protect against the threats we know are coming. We have developed plans to address the extreme weather events our city will face in the years ahead.

Working to withstand stormwater floods from torrential rainfall

A total of 418 of New York City’s 665 miles of subway track are underground. When stormwater from average rainstorms (that produce less than 1.75 inches of rain per hour) enters the underground subway system through openings like street vents and stairways, it travels through a complex underground hydraulic system. This system of drains, drain lines, and pumps connects to the city’s sewer system to drain the stormwater and keep the system dry.

However, during torrential rainfalls, stormwater can collect on the street and inundate our underground system, flood stations and track, and damage critical infrastructure like communication and electrical equipment. For example, in August 2007, when roughly 3.5 inches of rain fell in parts of Brooklyn and Queens over a two-hour period, it caused a shutdown of subway service.

More recently, in September 2021, Hurricane Ida brought a record 3.15 inches of rainfall in one hour and a total of 6-8 inches of rainfall in some locations across New York City, causing critical damage and service suspension across the system.

In response, we installed new mitigation measures, like raised stairway landings, raised vents, and flash flood mechanical closure devices, across stations that are vulnerable to torrential rainfall flooding.

Over the next 20 years, we will continue investing in these “passive” protection measures, which do not require special deployment but begin working as soon as rainfall begins. We will also invest in increasing pumping capacity and sump pit detention capacity across the system to reduce the amount of stormwater draining to the city’s overwhelmed sewer system.
Subway Resilience Case Study

How stormwater from torrential rainfall can flood the subway

1. A complex system of underground drains, drain lines, pumps and sumps keeps the subway system dry during normal conditions.

2. The subway drainage system connects to the New York City storm sewer system that takes the water to the local wastewater treatment plant.

3. When sewers are overwhelmed, torrential rainfall events cause water to collect on the street. This stormwater can enter the subway from the street through openings like sidewalk vents and stairs.

4. In addition to entering the subway from the street, stormwater can also back up within the subway when sewers are overwhelmed.

5. Over the next 20 years, we will adapt the subway to more torrential rainfall events by installing more flood mitigation measures at the street-level and improving the subway drainage system where possible. We will also coordinate with the city to reduce the impacts of overwhelmed storm sewers.
Preventing for more extreme and prolonged heat waves

Extreme and prolonged heat days above 90 degrees are projected to increase from 17 days per year to more than 65 days per year by the 2050s. This kind of heat can cause exposed, outdoor tracks to expand, buckle, and kink, posing a derailment risk. Subway signals and switches can also expand and malfunction, disrupting service; and communication and fare control equipment can degrade and impact closed-circuit television (CCTV) and voice and data communications with customers.

To account for the prolonged heat waves that will occur over the next 20 years, future design of projects will consider heat-related impacts. We will also collect real-time temperature data in stations and assets within stations, like communications and electrical rooms, to prioritize investments in cooling and air circulation technologies.

We continue to reduce coastal surge flood risks

By the 2050s, climate change is projected to increase mean sea level by as much as 2.5 feet, which will exacerbate the risk of surge floods during a severe coastal storm. We have reduced coastal surge risk through our coastal flood mitigation assets, like marine doors and vent closure devices, and will continue to maintain these while also prioritizing additional investments in locations where the risk beyond 2050 is greatest. We are also keeping an eye on future surge mitigation strategies and technologies that require minimal advance warning to deploy.

We must rise to the climate change challenge

With the investments of the past 15 years, the New York City subway system is undoubtedly more resilient to climate risks than it was before. But climate change will continue to expose the system to new and growing risks. That’s why we are taking a proactive approach to anticipate and prepare for future threats by continuously assessing climate risk and making the capital investments needed to protect the system from extreme weather for the next generation.
Confronting sea level rise along Metro-North’s Hudson Line

Metro-North’s Hudson Line is renowned for its scenic views of the Hudson River. However, this proximity to the water also means that it is increasingly threatened by flooding. Over 50% of the approximately 74-mile-long line is vulnerable to coastal flooding from storms today. This number will grow as sea levels rise and coastal storms become more frequent and intense due to climate change.

For 10 million annual Hudson Line riders, that means more potential service delays as storms and chronic flooding get worse in the coming decades. It will also impact riders on Amtrak and freight deliveries carried by CSX, as both services rely on portions of the Hudson Line.

Recent resilience investments have reduced coastal flood risk

During Superstorm Sandy in 2012, over half of the Hudson Line flooded, resulting in significant damage to power, communications, signal systems, and other assets. After Sandy, we made significant investments in resilience measures along the 30-mile electrified portion of the line from the Bronx to Croton-Harmon. These investments enable critical power, communications, and signals assets to withstand the impacts of coastal storm surges and reduce the duration of potential service interruptions during and immediately after such events. But our work is not done. As the climate changes, we must also grapple with the growing climate hazards that threaten the Hudson Line tracks and right-of-way.

Sea level rise is leading to growing and changing flood risks

While the MTA’s post-Sandy investments help mitigate coastal flood risk, flood events related to non-coastal surges are increasing. Sea level rise will lead to higher tides and chronic sunny day flooding along the Hudson Line right-of-way.

Sea level rise also accelerates shoreline erosion and enables smaller, routine storms to result in more extensive flooding. In addition, these higher tides can reduce the functionality of existing gravity-dependent drainage systems, further exacerbating flooding.

The threats posed by sea level rise, particularly combined with the increased torrential rainfall we are already experiencing, mean that we must proactively act to ensure continuous service over the long term.

Post-Sandy Hudson Line resilience mitigations include elevated equipment platforms.
Current sunny day during high tide
The Hudson Line runs directly adjacent to the Hudson River. Much of the right-of-way is between the Hudson River and the foot of a steep embankment on the other. During high tide, portions of the right-of-way are just a few feet above the river.

Future sunny day during high tide
The Hudson River is a tidal estuary that experiences daily tidal shifts. Rising sea levels will lead to higher tides that cause flooding along the right-of-way. The New York City Panel on Climate Change estimates that sea levels could rise 2.5 feet by the 2050s and by 4.8 feet by the 2080s. Without action, entire low-lying segments of the Hudson Line will be subject to regular tidal flooding. Tidal floods will be salt water on this portion of the river, causing corrosive damage.

Future torrential rainfall during high tide
During torrential rainfall events, runoff flows down the embankments and into the Hudson Line right-of-way, gathering speed and carrying debris flows toward the river. With sea level rise, the rising tide of the Hudson River will meet runoff from the steep slopes within the Hudson Line right-of-way. The resulting floods can cause track washouts, erosion of shoreline and ballast, debris accumulation and other types of equipment damage that result in service impacts and repair expenses.

Responding to a changing climate requires significant planning and investment
A challenge of this magnitude requires a combination of near, medium, and long-term solutions. The portions of the Hudson Line right-of-way that will be exposed to imminent tidal flooding will be prioritized for capital improvements over the next 20 years.

As part of that plan, key near-term actions include the rehabilitation of shoreline structures, addressing erosion hot spots, stabilizing upland slopes, and upgrading undersized and underperforming drainage, where feasible.

We will also pursue a long-term resilience strategy that will include floodproofing and raising assets to safer levels to ensure that this line can continue to provide service throughout this century and beyond.
Sustainability

MTA transit is a climate solution. The typical subway commute is 10 times greener than the same commute by car. In 2019, MTA riders in aggregate avoided more than 20 million metric tons of greenhouse gas emissions, helping to earn New York one of the lowest statewide per capita greenhouse gas emission rates in the country.

Greenhouse gas emissions from the transportation sector are the largest source of national emissions and are on the rise. Retaining and growing transit ridership is the best way to fight transportation-related greenhouse gas emissions. The MTA stands ready to deliver on this critical mission as a partner in the climate fight.

But fighting climate change requires an all-hands-on-deck approach. Therefore, in addition to supporting the region with very low emissions transit services, we will cut our own operational emissions by at least 85% by 2040, from a 2015 baseline of 2 million metric tons. The result will be a reduction of at least 1.75 million metric tons of emissions per year by 2040.

Challenges

We must achieve our own operational emissions reduction goal without compromising the safety, affordability, and reliability of our transit services. There are three main challenges in realizing this goal:

1. Rising electricity demands

The MTA consumes a lot of electricity, mostly for traction power to move subways and commuter trains. Our electricity demand will increase as we expand service and transition existing fossil-fueled fleets and building systems to electric, elevating the importance of carbon-free energy sources.
Emerging technologies

As we transition fleets we are encountering challenges associated with emerging technologies, including supply-chain constraints for zero-emissions buses and limited commercially viable options for low-emissions locomotives. In parallel, transitions to battery electric vehicles require significant investments in charging infrastructure and supporting building systems.

Complex building system updates

Most of our facilities, including stations, depots, and shops, rely on complex building systems powered by fossil fuels, including complex systems like HVAC (heating, ventilation, and air conditioning). Updating these systems is challenging due to the typical age, size, and function of our facilities.

The pathway to 85% operational emissions reduction builds on multiple programs already in motion. Most significantly, we have initiated a transition of the entire bus fleet to zero emissions by 2040. Fifteen electric buses are already operational and an additional 60 electric buses are scheduled to start delivery this year.

Incorporating new renewable energy infrastructure in our facilities will require updates to building systems, particularly electrical utilities.

In addition to initiating the transition of fleets, we have implemented a tremendous portfolio of energy efficiency projects in multiple facilities over the past several years. Examples include lighting upgrades, replacement of inefficient HVAC systems, and installation of automatic rolldown doors that keep heat in the building when buses or trains are not passing through.

These projects have reduced our total energy consumption and cut annual greenhouse gas emissions by 100,000 tons per year.
Our 20-year plan

Over the next 20 years, we will deepen our stakes in the regional climate fight.

Highlights Include:

1. **Attract new riders by supporting sustainable transportation and transit-oriented development**

 We look forward to partnerships with local and county governments that bolster transit ridership by supporting new construction around transit stops, particularly new affordable housing opportunities, and improving adjacent properties and roadways for sustainable transportation, including exceptional bus service and dedicated bicycle, pedestrian, and micro-mobility infrastructure.
Cut agencywide operational greenhouse gas emissions at least 85% by 2040

We will achieve this goal by maintaining a focus on three strategies:

Transition fleets
Zero-emissions buses and accompanying charging infrastructure will be key components of our future capital programs and our commitment to cut operational greenhouse gas emissions by 85% by 2040. We are also transitioning other MTA fleets from fossil fuels:

Multiple types of fleets

Buses
The purchase of zero-emissions buses and setting up charging infrastructure will be key components of our future capital programs, and they are crucial to our commitment to cut greenhouse gas emissions by 85% by 2040.

Locomotives
Locomotives move trains when there is no electric power available. They are the toughest type of vehicle to decarbonize given few commercially viable alternatives.

We will achieve significant emissions reductions as we replace existing locomotives with new dual-mode technologies. Going forward, we'll continue to survey the market for new technologies, with the ultimate goal of deploying low or zero emissions alternatives.

Non-revenue vehicles
Non-revenue fleet vehicles support our services and are not used to move passengers. Planning is underway to transition fossil-fueled non-revenue vehicle fleets to zero-emissions alternatives. Like buses, this transition will be accompanied by the installation of charging infrastructure at select facilities.

Update facilities
We will update fossil-fueled building systems to low- or zero-emissions alternatives and install renewable energy infrastructure, including solar panels, where feasible. These actions will advance our operational emissions reductions, unlock energy cost savings, and reduce demands on the electrical grid.

MTA building systems

We maintain over 16 million square feet in facilities such as train shops, bus depots, stations, and administrative buildings. Over the next 20 years, we will update these facilities as part of the state-of-good-repair capital investment process.

As we replace aging building assets, we will prioritize sustainability as a guiding principle. By installing more efficient HVAC units, doors, and lighting systems, along with roofs that harvest solar power, we can save energy, decrease operational costs, and reduce emissions.

Improve energy efficiency
We will employ strategies, in particular emerging technologies, to reduce energy use. Since most of our electricity use is for traction power, we will investigate ways to capture and re-deploy regenerative braking energy from trains, which could allow us to utilize the stored energy during peak demand on the electrical grid.

Emerging technologies saving energy

We recently piloted wireless controls and sensors to reduce natural gas and oil consumption for HVAC systems and boilers in several facilities across the system.

The pilot project demonstrated fuel reductions of 33% to 66%, indicating potential to significantly reduce greenhouse gas emissions and save on energy costs.

To see the full plan, please visit future.MTA.info.
In 2018, the MTA announced a commitment to transition the entire bus fleet to zero-emissions by 2040. This ambitious initiative is a core component of the MTAs goal to reduce agency-wide greenhouse gas emissions 85% by 2040. When completed, the transition will eliminate more than 500,000 metric tons of emissions annually.

Fossil-fueled vehicles have supported MTA bus operations since the mid-20th century. Until recently, MTA capital investments, operations, and workforce skills were oriented around fossil-fuel-based technologies. Converting to alternative technologies requires unprecedented investments in new types of vehicles, in workforce training, and, most consequentially, in new electric vehicle charging equipment to replace fossil fuel infrastructure.

The MTAs bus fleet transition is complicated by the fact that it is orders-of-magnitude larger than any other transit agency across the country. The transition will entail major challenges, including funding constraints, limited availability of suitable products, and uncertainties associated with rapidly emerging new technologies.

The Zero-Emissions Bus Transition Plan will be guided by criteria such as equity and environmental justice, distribution across boroughs, construction feasibility, schedule feasibility, depot modifications, and power supply availability. In consideration of these criteria, the transformation will be implemented across three areas:

Fleets: The MTA is transitioning its fleet of almost 6,000 buses to zero-emissions buses in four stages, closely aligned with the capital planning process.

- **Stage 1** (2015-2019 & 2020-2024) deploys 560 battery-electric buses to test infrastructure and operational feasibility.
- **Stage 2** (2025-2029) deploys over 100 buses at multiple depots while converting Jamaica Depot to 100% zero-emissions. All new bus orders become zero-emissions after 2029.
- **Stage 3** (2030-2034) converts about a third of the fleet to zero-emissions with a mixture of propulsion types that include battery-electric and some hydrogen fuel cell buses.
- **Stage 4** (2035-2039) will round out the transition to 100% zero-emissions bus service and retire all remaining non-zero-emissions buses.

Depots: The MTA will focus on in-depot charging, using high-capacity chargers with multiple dispensers and dedicated positions for each bus. This transition will require approximately 262 MW of new power supply across 28 bus depots. We are also exploring options like on-site battery storage and solar generation to reduce grid power demands. Many depots will need significant upgrades to accommodate zero-emissions buses, and some may even require expansion or acquisition of new facilities.

Workforce: Over the course of the transition, the MTA will develop workforce skills in four areas: safety, bus maintenance, facilities maintenance, and operations. Safety will require baseline awareness for all staff and more extensive training for those working with high voltage systems. Bus maintenance staff will need new skills for battery and electric propulsion systems. Facilities maintenance will involve troubleshooting and fixing charging equipment. Operations will require adapting to charging requirements and range limitations. The MTA is developing training programs and leveraging existing experience to prepare its workforce for these changes.
Innovation and technology

We must continue to innovate to create a world-class 21st century transit system.

Innovations in technology and infrastructure are essential to enhance the efficiency, safety, and reliability of our vast network. That means constantly working to upgrade our system, experiment with new tools and processes, and incorporate the most promising solutions to improve service and rider experience.

Innovation is more than following trends. Rather, it means investing in foundational infrastructure that can be adaptable to increasingly advanced technology. Whether it’s communications or artificial intelligence, when new technologies mature from the “next big thing” to “proven and scalable,” we will have the backbone in place to take advantage of those developments.

Challenges

1. Aging technology

Much of the MTA’s critical infrastructure was built over a hundred years ago, with technology modern for its time but antiquated today. This means that our systems are not as efficient or effective as they could be to deliver world-class service.

2. Difficulty to scale

Given our intricate and vast system, we must take a strategic approach when implementing new technologies at scale. While technological innovations have the potential to greatly enhance experiences when successful, their failure can be costly. Preparing our complex and interconnected system for change necessitates meticulous planning and testing, even for the most promising tools and technologies.

3. Unpredictable change

Predicting the exact trajectory of technological advancements is challenging due to the rapid and often unpredictable nature and pace of innovation.
In recent years, the MTA has embraced innovative technologies and approaches to improve the customer experience.

OMNY

The transition to the OMNY contactless fare payment system represents a first-of-its-kind open loop system that allows riders to seamlessly travel throughout the New York region.

Apps and screens

A revolution in trip-planning ability for our customers, signal upgrades, and extensive investments into our communications systems enabled us to share real-time transit arrival updates through apps and nearly 10,000 screens in stations.

Industry partnership

The MTA has also formalized ways to stay on top of the latest technological innovations in industry, including launching the Transit Tech Lab, a public-private initiative with the Partnership for New York City to solicit and implement promising pilots from the tech sector.
Our 20-year plan

We will invest in the assets that enable technological innovation in the system.

A seamless, upgraded experience for riders

» We aim to create an easier travel experience, where riders can smoothly tap in using OMNY and enter through a new generation of fare gates that accommodate mobility devices, luggage, and bicycles.

» We aim to limit fare evasion, with retrofits to existing fare lines and use of laser sensors, AI, and other technology that detect and prevent evasion.

» We aim to improve the experience in station with enhanced customer communication, allowing riders to receive live service updates from service supervision staff at our centralized train control centers and cellular service in stations and subway tunnels.

Safer, more reliable service

» We are developing our next generation of operational command centers, which are the critical nerve centers that ensure smooth and efficient operation of services. These new facilities have greater monitoring and management capabilities for higher-quality, safer, and more secure service to customers.

» We are using cutting-edge technology to combat track intrusion, keeping our riders safe and avoiding disruptions and delays. Through laser intrusion detection systems, video analytics, and AI-powered forward facing cameras, we can prevent track intrusion incidents and respond better to those that do occur.

Use of innovative tools in design and construction

» We are expanding use of Building Information Modeling (BIM) technology and digital twins to create a digital representation of assets, track changes, and perform analysis for more cost-effective, and accurate design, construction, and operations.

» We are expanding use of unmanned aerial systems and laser technology for inspection and surveying of difficult-to-reach infrastructure, significantly reducing time-intensive data collection and risks to worker safety.

To see the full plan, please visit future.MTA.info.
Equity is a key driver in our investment decisions. When we upgrade a station’s accessibility, replace a route with emission-free buses, or enhance the resiliency of a subway line, historically underserved communities are at the forefront of our engagement, planning, and investment.

Accessibility

Equity is an important consideration in our process for determining what subway stations should be prioritized for accessibility. Among other criteria, we consider community feedback, the number of people living in poverty near a given station, the number of reduced fare riders that station serves, paratransit use in the area, and the geographic proximity of other accessible stations, so that areas that might have been overlooked in the past now get priority.

Resilience

Some of the riders who are the most dependent on transit are the most vulnerable when extreme weather disrupts service. Climate change will disproportionately burden historically disadvantaged communities. Our data-driven approach to evaluating future climate risk considers the social implications of climate change and its impacts on the MTA and our customers, to ensure that resources allocated to climate resilience will address these burdens.

Sustainability

We’ve developed an environmental justice score that looks at both equity and air quality across the MTA bus service area for the zero-emissions bus fleet transition. Areas with higher environmental justice scores are prioritized for earlier and larger zero-emissions deployments to improve the health of our riders who have been most impacted by poor air quality.
Once our foundation is secure, we can pursue smart expansion projects to support our growing and changing region.
Investments in our network provide the foundation for the region’s economic growth and prosperity. As we look ahead 20 years, our most urgent priority is to secure the survival of our existing system by rebuilding its most imperiled infrastructure, renewing its outdated and broken parts, and implementing improvements that will deliver more inclusive, safe, and reliable service. To put it bluntly, unless sufficient resources are made available to address the existing system’s most urgent needs, there cannot be investment in expansion projects.

At the same time, we must be prepared for future expansion that can address the challenges and opportunities of the coming decades. This includes planning for the additional 1 million residents and nearly 1 million jobs forecast in the region by 2045. We must also be ready to meet the evolving needs of our riders, including changes already underway regarding when they travel, why they travel, and what they expect from their experience.

We must be ready to invest any additional resources into projects that address these challenges most effectively and that will have the greatest regional impact. That is why we have developed the MTA’s first-ever Comparative Evaluation, which weighs the costs and benefits of potential expansions to help us make smarter, more strategic choices to secure New York’s future.

Challenges

We must be sure that any expansion projects provide cost-effective benefits that complement the existing network.

When considered in isolation, many potential expansion initiatives are appealing. But rebuilding our existing infrastructure — infrastructure that millions of people rely on everyday — must not get shortchanged at the expense of these projects. These competing demands do not exist in a vacuum — choices to fund certain projects come at the expense of others. Once our system’s most urgent needs have been met, if there are still resources available for expansion, it is critical that we consider our system holistically and make wise, strategic decisions about which projects could best support our region’s future.

The region is changing, and we need to be responsive. As part of our ongoing long-range planning process, we continually monitor regional trends by analyzing changes in housing, work location, and other factors that affect travel patterns to better understand how regional changes will impact travel and the MTA network.

We identified the following trends that will continue to develop and exert new pressures on our system over the next two decades:

Continued growth of industries associated with “non-traditional” travel patterns

Jobs in industries such as health care, hospitality and food services, and education have become some of the region’s fastest-growing industries. Workers employed in these sectors tend to travel at all times of day and are usually required to work in-person, creating new patterns of commuting.

By 2045, projections show that non-office jobs like these will be growing more than three times faster than office jobs.

Coney Island–Stillwell Av Station
Emergence of new business districts around the region

Although Manhattan continues to have the highest concentration of jobs—and access to the city’s Midtown core remains essential—the outer boroughs and suburbs are experiencing significant job growth with gains projected through 2045. This will result in changing travel patterns. For instance, inter- and intra-borough travel is growing, along with reverse commuting—a trend that will likely continue.

By 2045, the MTA service region is expected to gain nearly 1 million new jobs, with one out of three new jobs in the suburbs. In New York City, seven out of 10 new jobs are projected to be in the outer boroughs.

Increase in off-peak travel

The number of people traveling outside of the morning (6-10 a.m.) and evening (4-8 p.m.) peak times was growing in the years leading up to the COVID-19 pandemic, with increasing numbers of New Yorkers choosing transit for their travel. Subway off-peak ridership increased by 24% from 2001 to 2018. During that same time frame, off-peak LIRR ridership increased 18%, and Metro-North off-peak increased 24%.

The weekday peaks are returning; however, we are seeing a greater proportion of riders in comparison to pre-pandemic levels on weekends. New Yorkers are increasingly taking subways and buses during off-peak hours for health care, shopping, social gatherings, and recreational trips. This highlights the importance of off-peak travel, not only for the most transit-dependent individuals, but also for those who choose it for discretionary travel.

New York City Transit

Second Avenue Subway

Phase 1 of the Second Avenue Subway, which extended the Q line from 63 Street to 96 Street, was completed in 2017 and has already reduced crowding on the 4, 5, and 6 lines by an average of 40%.

Phase 2 will extend the Q line into East Harlem with three new stations between 106 Street and 125 Street, providing the first subway service to the neighborhood since the Third Avenue Elevated line stopped running there in the 1950s.

Other benefits of the ongoing Phase 2 expansion will include: three new ADA-accessible stations at 106 St, 116 St, and 125 St; increased transit connectivity at 125 St, with connections to the 4, 5, and 6 lines, Metro-North, and M60 Select Bus Service to LaGuardia Airport; a one-seat ride from East Harlem to the Upper East Side, West Midtown, and Coney Island; even more reduced crowding on the 4, 5, and 6 lines, as well as the 96 St local bus service; and dramatically shorter commute times, with some passengers saving as much as 20 minutes.
Long Island Rail Road
Grand Central Madison

This historic expansion opened in early 2023, providing LIRR riders with 40 miles of new tracks, a new terminal beneath Grand Central, and the modernization of the busiest intersection of passenger train lines in North America. It has also unlocked reverse commuting potential for New York City residents and others around the region by providing better access to jobs on Long Island.

Third Track

This project dramatically increased the capacity of LIRR’s Main Line, adding a third track while upgrading stations, replacing substations, and eliminating grade crossings. Combined with Grand Central Madison, this enabled a 40% increase in overall LIRR service. The MTA’s first design-build expansion project, it was delivered on time and under budget.

Double Track

This project added a second track to LIRR’s Ronkonkoma Branch, greatly increasing capacity and setting the stage for Third Track.

Elmont-UBS Arena Station

Constructed at zero cost to the MTA, this is the first new LIRR station in almost 50 years, serving the new arena.

Metro-North Railroad
Penn Station Access

This project will create direct service from Metro-North’s New Haven Line into Penn Station, creating four new accessible stations, improving existing tracks and bridges, and cutting current travel times from the Bronx to Manhattan by as much as 50 minutes. It will give new access to 500,000 Bronx residents, 25% of whom are below the poverty line—and potentially eliminate 80,000 miles traveled by cars.

It will also create 19 miles of new and rehabilitated track along Amtrak’s Hell Gate Line, which will improve reliability and on-time service for Amtrak customers.

Our 20-year plan

Our process for evaluating potential projects

With limited resources and vast needs, it is essential that we prioritize projects that will have the greatest impact for our riders and the success of the region.

This is why for the 20-Year Needs Assessment, we conducted our first-ever Comparative Evaluation (available in full in the Appendix). Instead of assessing projects in isolation, this analysis evaluates all potential expansion projects against a consistent set of criteria.

The criteria include ridership, time savings, network resiliency and sustainability, capacity, equity, network leverage, geographic distribution, and cost.
Cost per minute saved

All of these metrics are important, but it’s essential that the costs of a project are properly compared to the benefits.

While every metric matters, our limited resources mean that we can’t simply support projects based on their benefits alone. All of these projects provide benefits. This tool enables us to make the smartest, most productive investments—in other words, it helps us evaluate how to bring the most benefits, to the most people, in the most cost-effective way.

The primary metric we used in this cost-benefit analysis is cost per minute saved. To determine this number, we evaluated:

Benefits

A calculation that accounts for the total time saved by the project riders compared to their regular trip before the expansion, and any ripple travel time impacts on the rest of the MTA system (for example, an infill station might add additional time to existing riders). This comprehensive approach enables us to prioritize projects that serve a lot of riders—and save a lot of time.

Costs

A holistic calculation of the project cost, including the costs to build and operate the expansion project over the next 30 years.

While other factors, especially equity and sustainability, also need to be taken into account, this cost-benefit ratio is an important indicator of which projects are a most responsible use of limited public dollars.

Comparative Evaluation

This transparent and systemic analysis is intended to provide a framework for understanding which proposed expansion projects or investments will best address our most pressing challenges, offer the solutions given limited resources, and generate the greatest benefit for customers. The most promising projects can be advanced for further study and possible inclusion in future capital plans.

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ridership</td>
<td>Total ridership</td>
<td>Number of riders using the project (in 2045)</td>
</tr>
<tr>
<td></td>
<td>New riders</td>
<td>Number of riders (in 2045) using the project that shifted from the other non-MTA modes, usually auto</td>
</tr>
<tr>
<td>Travel time</td>
<td>Door-to-door travel time savings</td>
<td>Amount of time (in 2045) saved by users of the new project—it includes the time for travel to and from the transit stations or stops</td>
</tr>
<tr>
<td>Cost</td>
<td>Capital cost</td>
<td>Cost construction and fleet in 2027 dollars</td>
</tr>
<tr>
<td></td>
<td>Operation and maintenance (O&M) cost</td>
<td>Annual cost to operate and maintain in 2027 dollars</td>
</tr>
<tr>
<td>Cost-effectiveness</td>
<td>Cost per minute of time saved (30 years)</td>
<td>Capital construction and vehicle costs, per time savings in 30 years (minutes saved on door-to-door travel)</td>
</tr>
<tr>
<td>Capacity</td>
<td>Change in network capacity</td>
<td>Change in the number of passenger hours in 2045 in crowded conditions systemwide</td>
</tr>
<tr>
<td>Geographic distribution</td>
<td>Regional accessibility</td>
<td>Change in transit travel time (in 2045) from anywhere to anywhere in the region</td>
</tr>
<tr>
<td>Equity</td>
<td>Projected riders from Equity Areas</td>
<td>Total or percentage of projected riders (in 2045) from Equity Areas</td>
</tr>
<tr>
<td>Network leverage</td>
<td>Project right-of-way on MTA, public, or private land</td>
<td>Weighted average of right-of-way length by owner; measure of how each project utilizes the existing MTA-owned infrastructure and right-of-way</td>
</tr>
<tr>
<td>Sustainability and resiliency</td>
<td>Change in vehicle-miles-traveled</td>
<td>Change in vehicle miles traveled (in 2045)—reflects both the number of people shifting from auto to transit and the traveled distance</td>
</tr>
<tr>
<td></td>
<td>Connections to other rail</td>
<td>Number of rail or subway stops within one-half mile from the project stations/stops in NYC, or within five miles in suburban areas</td>
</tr>
</tbody>
</table>
Results

We evaluated more than 20 potential enhancement and expansion projects.

Some of the evaluated projects were identified as particularly promising, including the Interborough Express, a new transit line between Queens and Brooklyn along an existing freight corridor that would connect up to 17 subway lines and the LIRR.

We will continue to evaluate promising projects so that, as we learn more about our available resources once the most urgent system needs have been met, we will be ready to act. The Comparative Evaluation process gives us the foundation to make smarter, better-informed choices about expansion possibilities for the region and how to best meet the public transportation needs of the future.

For further details on the process and outcomes of each potential project, see the Comparative Evaluation in the Appendix. A description of each project and preview of how they scored across the criteria is below.

<table>
<thead>
<tr>
<th>Projects</th>
<th>Cost/Time Saved (20 yrs) ($/min)</th>
<th>Total Riders</th>
<th>Total Riders from Equity Areas</th>
<th>% Riders from Equity Areas</th>
<th>Regional Accessibility</th>
<th>Change in Vehicular Miles Traveled</th>
<th>Subway/Rail Services < 0.5 miles (NYC) < 4 miles (suburbs)</th>
<th>System Crowding/Passenger Hours in Crowded Conditions</th>
<th>% of Project ROW on MTA, Public or Private Land</th>
<th>Total Riders (Daily 2045)</th>
<th>Construction Cost ($M 2027)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Danbury-Southeast Connection</td>
<td>$6.35</td>
<td></td>
</tr>
<tr>
<td>Elmhurst Station (LIRR)</td>
<td>No Time Saved*</td>
<td></td>
</tr>
<tr>
<td>Harlem Line Capacity Improvements</td>
<td>$2.46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>83,700</td>
<td>$1000</td>
</tr>
<tr>
<td>Hudson Line to Penn Station</td>
<td>$4.54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19,900</td>
<td>$750</td>
</tr>
<tr>
<td>Inner New Haven Line Yard</td>
<td>$5.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6,000</td>
<td>$390</td>
</tr>
<tr>
<td>Interborough Express LRT (IBX)</td>
<td>$12.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>118,700</td>
<td>$5,540</td>
</tr>
<tr>
<td>Lower Montauk Branch Reactivation</td>
<td>$62.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9,200</td>
<td>$4,230</td>
</tr>
<tr>
<td>New Lots Ave No 3 Line to Flatlands</td>
<td>$8.64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8,600</td>
<td>$1,780</td>
</tr>
<tr>
<td>Port Jefferson Branch Capacity Improvements</td>
<td>$61.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>27,900</td>
<td>$3,320</td>
</tr>
<tr>
<td>Port Jervis Line Capacity Improvements (MP Yard)</td>
<td>$40.46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11,000</td>
<td>$360</td>
</tr>
<tr>
<td>Ridgewood Busway</td>
<td>$0.0**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8,900</td>
<td>$30</td>
</tr>
<tr>
<td>Rockaway Beach Branch (NYCT)</td>
<td>$6.72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>39,200</td>
<td>$5,840</td>
</tr>
<tr>
<td>Second Ave Subway South to Houston</td>
<td>$4.47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>230,400</td>
<td>$13,500</td>
</tr>
<tr>
<td>Second Ave Subway West to 125th/Bdwy</td>
<td>$1.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>239,700</td>
<td>$7,540</td>
</tr>
<tr>
<td>Speonk-Montauk Capacity Improvements</td>
<td>$13.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,500</td>
<td>$260</td>
</tr>
<tr>
<td>Staten Island North Shore BRT</td>
<td>$1.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>32,000</td>
<td>$1,300</td>
</tr>
<tr>
<td>Staten Island West Shore BRT via Korean War Vet Pkwy</td>
<td>$1.96</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16,900</td>
<td>$1,870</td>
</tr>
<tr>
<td>Stewart Airport Commuter Rail</td>
<td>$10.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4,300</td>
<td>$1,400</td>
</tr>
<tr>
<td>Sunnyside Station (LIRR)</td>
<td>No Time Saved*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7,900</td>
<td>$490</td>
</tr>
<tr>
<td>Tenth Ave Station on No 7 Line</td>
<td>$81.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>55,000</td>
<td>$19,900</td>
</tr>
<tr>
<td>Utica - Neosrand Junction Capacity Improvements</td>
<td>$0.28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>319,900</td>
<td>$410</td>
</tr>
<tr>
<td>Utica All A - BRT</td>
<td>$0.36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>719,000</td>
<td>$300</td>
</tr>
<tr>
<td>Utica All B - Subway to Kings Plaza</td>
<td>$4.82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>55,600</td>
<td>$15,790</td>
</tr>
<tr>
<td>Utica All C - Subway to Church Ave + BRT</td>
<td>$173</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>81,200</td>
<td>$6,860</td>
</tr>
<tr>
<td>W Line to Red Hook</td>
<td>$90.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7,600</td>
<td>$11,210</td>
</tr>
</tbody>
</table>

Notes: *Elmhurst and Sunnyside have no overall time savings due to increased travel time for existing customers.
**Ridgewood Busway operational savings over project lifetime exceed capital costs

To see the full plan, please visit future.MTA.info.
What is IBX?

IBX is a proposed light rail transit line that would travel a 14-mile route along an existing freight line to connect eastern Brooklyn and central Queens. This transformative rapid transit project would serve nearly one million people, many in historically underserved neighborhoods that offer limited transit options.

From Bay Ridge, Brooklyn to Jackson Heights, Queens, the IBX would create greater access to employment, healthcare, and other economic opportunities, while creating new affordable and sustainable travel options without the burden of lengthy commutes.

New transit connections

Today, the majority of Brooklyn- and Queens-bound work trips are made by car. Those who do travel by subway are often forced to take indirect routes to their destination; currently half of all subway trips between Brooklyn and Queens require an unnecessary detour through Manhattan.

IBX would eliminate this trip inefficiency, making transit a more convenient and attractive choice that saves time for riders, decreases crowding on Manhattan-bound subway service, and reduces traffic and vehicle emissions.

While many passengers will reach their destinations in a single IBX ride, the route also provides connections to 17 subway lines already serving Brooklyn and Queens, multiple bus routes, and an existing LIRR stop at the Atlantic Av-East New York Station.

The IBX will benefit traditionally underserved communities.

<table>
<thead>
<tr>
<th>7 in 10</th>
<th>3 in 10</th>
<th>1 in 2</th>
<th>1 in 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>People of color</td>
<td>Households below 150% of the poverty line</td>
<td>Zero-car households</td>
<td>Residents with limited English fluency</td>
</tr>
</tbody>
</table>

Transformative transit connections for disconnected communities

IBX would connect adjacent neighborhoods that are inadequately linked by existing transit, even as the number of people traveling between them rises.

Today, it takes a Midwood resident a minimum of 40-50 minutes and multiple/various transit options to reach Broadway Junction—which is less than 6 miles away. Their trip begins on the Q train, which they can take to LIRR or to the Franklin Avenue Shuttle, which places them at the A train for the final leg. If connections between these services are out of sync, their trip could take longer than estimated.

The same trip on the IBX would provide a single train ride and cut travel time in half. Similar stories would be repeated across the entire 14-mile length of the line. Overall, the IBX would create a new transit option for close to 900,000 residents who live in the neighborhoods along the route, along with 260,000 people who work near the project corridor.

A significant portion of these residents would see their regular commutes transformed: more than 55% of Brooklyn residents and 40% of Queens residents who live within the IBX corridor currently commute within and between these boroughs.
IBX would support communities who need it most

IBX would support the MTA’s goal of increasing equity in our transit system by targeting new investment and services in communities that need it most.

Almost three-quarters of the population served by the IBX are people of color and one in four people has limited fluency in English. One-third of these households are below 150% of the poverty line and half of them do not own a car. The neighborhoods along the proposed route also include high numbers of our most essential workers, who kept us going through the peak of the COVID-19 pandemic and work shifts throughout the day and night.

Providing these populations with additional reliable, high-frequency transit options would help increase their mobility and improve their access to economic opportunities.

Some prospective transfer stations with highest projected IBX ridership

An efficient, cost-effective plan

The IBX project was designed to maximize efficiency and cost-effectiveness, while providing the most benefits. That includes using:

Existing infrastructure

The route runs along the LIRR-owned Bay Ridge Branch and CSX-owned Fremont Secondary freight line. Using existing infrastructure will result in lower construction costs and a shorter implementation timeline than if we built something from scratch.

Light rail

We selected light rail as the transportation mode after extensive planning, analysis, and public engagement determined that it would provide the best service for riders at the best value, and would be the most adaptable to the existing freight rail line. Light rail’s faster implementation timeframe would also allow us to start service more quickly.

Substantial investments required for stations, railcars, and reconstruction

While the choices above have minimized the costs, the project still requires significant new infrastructure, including new track, new stations, and new light rail vehicles.

In addition, the IBX will require reconstruction of a substantial number of bridges throughout the corridor, as well as track widening and tunnel rehabilitation. We will also need to build traction power and distribution substations, state-of-the-art communications and signaling systems, and a new maintenance facility to store and maintain the new light rail vehicles.

It’s a complex project, but one that will deliver a better quality of life to hundreds of thousands of riders.
Expansion projects can be key drivers of mobility, actively addressing past injustices. Our current capital program features two great examples of this—Second Avenue Subway Phase 2, which will finally deliver on a decades-old promise to the East Harlem community, and Metro-North’s Penn Station Access, which will provide new service on the New Haven Line to the East Bronx in communities that have long been divided, but not served, by an active intercity railroad.

Going forward, we will continue to prioritize cost-effective projects that deliver for historically underserved communities where high concentration of minority, low-income, and transit-dependent populations live.
The 20-Year Needs Assessment underscores the urgency of investing in our region’s transportation network, especially our core infrastructure, and outlines what capital investments are needed over the next 20 years to keep New York moving.
A new perspective

This 20-Year Needs Assessment differs from previous reports in fundamental ways.

First, unlike previous plans that were constrained by anticipated budget allocations, we have used the data to generate a comprehensive and transparent analysis of need. This unconstrained assessment provides a more robust and clear-eyed outlook on the vulnerabilities our system will face over the next 20 years, including the dire state of some of its most essential infrastructure—as well as the opportunities ahead.

This is also the first 20-Year Needs Assessment conducted by MTAs newly formed and centralized capital planning department, which examines all agency needs from a holistic perspective.

Unlike previous iterations of these plans, this report is intended to communicate more directly with the people who have the most at stake—the riders of our system. As a result, it connects our asset needs to the performance of our system and level of service for our riders.

It lays out the broader implications of investment—and disinvestment—in the system and describes what it will take to meet performance goals for riders regarding reliability, speed, accessibility, safety, and other priorities.

It underscores what’s at stake—and what is possible to achieve.

A data-driven approach

Hundreds of expert staff from across every MTA agency have spent the past two years examining every element of the MTA’s $1.5 trillion worth of assets, using a robust combination of new groundbreaking tools, agency data, customer surveys, and long-established inspection protocols, to provide unprecedented insight into the state of our system. Highlights of our sources of data include:

- **1** Our agencies perform regular and comprehensive inspections of the conditions of the assets. These inspections and engineering insights underpin all our findings. Without it, it would be impossible to know the condition of the system.

- **2** Our Enterprise Asset Management (EAM) system provides us with the capability to track the status of each individual system part. For example, systems like EAM help us to gain insight on where some assets have a pattern of many corrective work hours.

- **3** Our customer surveys help us to understand what customers care about most, particularly reliability, safety, and on-time performance.

- **4** Our new climate planning division used geospatial analysis to identify emerging threats.

- **5** Our comprehensive analysis of regional trends and emerging pressures helps us to anticipate where new demands will be made on the system.

- **6** Our first-ever Comparative Evaluation systematically compares the merits of every potential new project to help us identify the wisest investments with the greatest impacts.
This 20-Year Needs Assessment is ...

Comprehensive

We are providing an unfiltered view of our needs, unconstrained by budget. While prior iterations of 20-year needs assessments have outlined a circumscribed set of needs constrained by anticipated funding, this 20-Year Needs Assessment offers a comprehensive examination of all asset needs across the system.

Transparent

An important first step in planning is to understand the condition of our assets; that’s why we have focused on making the “state of our system” easier to understand. As a second step, we need to plan for how we will get it done with the resources that are allocated. That second step is the five-year capital plan.

Responsible

Budgets over a 20-year period are difficult to create with any level of precision. Rather than give a false impression of precision, this document recognizes that:

- Costs and timeframes for specific investments will—and should—be shaped by our approach to planning and executing the projects. This involves numerous defining decisions about how projects are bundled, sequenced, designed, value-engineered, and delivered. Projecting these costs and schedules without further project development would be premature and misleading.

- Many factors that influence cost are simply beyond the control of the MTA—and not just at the margins. Especially when planning for a 20-year outlook, this often leads to projections that can be vastly different than actual costs, as recently observed with the tremendous unanticipated fluctuations in inflation.

Our next step is the five-year capital plan

Over the next year, we will be refining, prioritizing, and packaging these needs into a five-year capital plan. This allows us to group needs based on anticipated schedules and resources—and to bundle projects strategically to minimize impacts to riders. The five-year horizon provides a more informed and reasonable time period for projecting budget requirements.

The 2025-2029 Capital Plan will be released in fall 2024
A new capital agency is ready to deliver

In 2019, the MTA created C&D as a single, unified agency to oversee its capital program. Whereas historically, the MTA’s capital program was drafted on an agency-by-agency basis, MTA C&D’s integrated approach has allowed innovations and best practices to be used across the program.

Since its creation, MTA C&D has ramped up the pace of capital investment. The 2020-2024 Capital Program is the most ambitious in MTA history, and MTA C&D is delivering results. In 2022, MTA C&D committed a historic $11.4 billion in new projects, with projects coming in $345 million under estimates. That year, the agency completed $6.2 billion of projects, including bolstering the Verrazzano-Narrows Bridge, upgrading accessibility at multiple stations, opening a storm-resilient Clifton Car Maintenance Shop, and much more vital state-of-good-repair work across the system. MTA C&D is currently executing a record-setting $11.7 billion in new projects, with projects coming in $345 million under estimate. That year, the agency completed $6.2 billion of projects, including bolstering the Verrazzano-Narrows Bridge, upgrading accessibility at multiple stations, opening a storm-resilient Clifton Car Maintenance Shop, and much more vital state-of-good-repair work across the system. MTA C&D is currently executing a record-setting $11.7 billion in new projects, with projects coming in $345 million under estimate. That year, the agency completed $6.2 billion of projects, including bolstering the Verrazzano-Narrows Bridge, upgrading accessibility at multiple stations, opening a storm-resilient Clifton Car Maintenance Shop, and much more vital state-of-good-repair work across the system. MTA C&D is currently executing a record-setting $11.7 billion in new projects, with projects coming in $345 million under estimate. That year, the agency completed $6.2 billion of projects, including bolstering the Verrazzano-Narrows Bridge, upgrading accessibility at multiple stations, opening a storm-resilient Clifton Car Maintenance Shop, and much more vital state-of-good-repair work across the system. MTA C&D is currently executing a record-setting $11.7 billion in new projects, with projects coming in $345 million under estimate. That year, the agency completed $6.2 billion of projects, including bolstering the Verrazzano-Narrows Bridge, upgrading accessibility at multiple stations, opening a storm-resilient Clifton Car Maintenance Shop, and much more vital state-of-good-repair work across the system. MTA C&D is currently executing a record-setting $11.7 billion in new projects, with projects coming in $345 million under estimate. That year, the agency completed $6.2 billion of projects, including bolstering the Verrazzano-Narrows Bridge, upgrading accessibility at multiple stations, opening a storm-resilient Clifton Car Maintenance Shop, and much more vital state-of-good-repair work across the system.

As a new agency, MTA C&D is taking a new approach to capital delivery to ensure projects are planned and constructed better, faster, and cheaper. In recent years, MTA C&D has implemented major improvements in project design and delivery, including implementing recommendations from the 2019 Crowe Forensic Audit, as well as initiatives in the agency’s inaugural Strategic Plan. These efforts have already brought significant improvements, from bringing costs of state-of-good-repair projects in line with peer agencies despite New York’s high construction costs, to completing major improvements like LIRR’s Third Track and the repair of the Train Tube on schedule and under budget. Additional efforts include, advancing significant regional improvements like creating four new Metro-North stations in the East Bronx.

Audit of MTA capital planning

In 2019, Crowe conducted and published the “Forensic Performance Audit of Metropolitan Transportation Authority’s Capital Planning Process” as required by the Public Authorities Law. The audit assessed the performance of the MTA’s capital program development processes, specifically evaluating the project selection for the five-year capital plan. The audit provided nine recommendations for improvement in the MTA’s capital planning processes:

Cost estimates

1. MTA can improve cost estimates with more formal, standardized, and consistently applied cost estimating procedures and agency documentation requirements.
2. MTA’s budgeted costs exceed comparative benchmarks for various reasons and the MTA should consider a range of alternative management approaches to control future costs.

Asset inventories and conditions

3. MTA can enhance linkages between capital projects included in the 2020-2024 Five-Year Capital Plan and assets targeted for repair/ replacement within agency asset inventories.
4. MTA has comprehensive asset condition databases which reflect existing conditions; however, MTA should supplement its asset condition database contents to better support asset condition determinations.

Capital planning processes

5. MTA has yet to realize significant MTA level capital planning benefits from EAM.
6. MTA’s largely manual 20-year needs assessment and five-year plan processes and disparate data platforms make it difficult for the MTA and agencies to assess priorities, backlogs, and alternative scenarios.
7. The MTA can improve the transparency of performance measures and dashboarding to more closely monitor five-year plan and project outcomes.
8. There are some limitations in the MTA’s capital planning review and approval processes.
9. MTA and agencies do not have comprehensive and fully documented capital planning policies and procedures.
MTA response to 2019 audit

Cost estimates

Accounting for—and ultimately reducing—the cost of capital projects is a high priority for the MTA. MTA’s core infrastructure projects, which make up over 80% of the 2020-2024 Capital Program, are cost-competitive with similar projects in peer agencies like Barcelona, Boston, Philadelphia, and Chicago. While expansion projects are expensive in the New York region, recent MTA expansion projects—such as the Second Avenue Subway—have significantly lower costs per rider compared to peer agencies in the U.S. and internationally.

Cost drivers unique to the New York region do have inflationary impacts on MTA capital projects. To reduce these drivers, the MTA has undertaken a breadth of cost containment measures, including implementing innovative contracting strategies and incentives, bundling projects to take advantage of economies of scale, reducing customization and simplifying specifications, and aggressive project management.

The MTA is also focused on improving and standardizing cost estimation. As standard practice, MTA uses Federal Transit Administration’s estimating guidelines and develops cost estimates based on historical data from past projects of comparable scale, inflation adjustments, prevailing labor wage rates, and standard contingency based on the stage of design development. Estimates are prepared utilizing industry best practices and standard templates. In addition, C&D is undertaking a systematic review and improvement of our cost controls MTA process, including developing a new cost estimating procedure and engaging an external expert cost and controls team to advise and train MTA C&D staff.

Asset inventories and conditions

To better inform investments in the next capital plan, the MTA has undertaken a thorough effort to modernize and standardize its asset inventories. The planning process for the 20-Year Needs Assessment has involved extensive work and cooperation in establishing detailed inventories of all MTA capital assets, including asset age and surveyed condition. As part of the assessment, we incorporated additional essential metrics including performance, criticality, parts obsolescence, and compatibility with modern systems. Using this more complete understanding of asset condition and future needs allows the MTA to target investment priorities that more strategically address capital needs and deliver improvements to service reliability and overall passenger experience.
Next steps

20-Year Needs Assessment

Capital planning processes

The MTA has made significant changes to the capital planning process since the recommendations from the Crowe Audit. In 2019, the MTA formed C&D with the express purpose of creating an integrated, streamlined capital planning, development, and delivery arm. Historically, the MTA’s capital program was delivered on an agency-by-agency basis, with each wing of the MTA running its own capital division. The unified approach, bringing together New York City Transit, Bus Company, LIRR, Metro-North, and B&T, provides efficiencies in management and allows innovations and best practices throughout the system.

As a newly unified agency, MTA C&D is working to implement comprehensive procedures that address all aspects of project planning and delivery. MTA C&D is in the process of adopting a new baseline procedure that standardizes the methodologies by which all projects will be executed to increase accuracy in cost estimations, establish risk profiles and mitigation strategies, and develop project performance estimates. In addition, MTA C&D is incorporating other procedures such as change order management procedures, to establish common processes for all agency projects.

The MTA has been implementing an EAM program since 2018 to create a comprehensive, unified, and transparent information technology strategy and database for managing and maintaining each of the operating agencies’ assets. An EAM program will enable the MTA to optimize resources and lower operational costs, while enhancing the safety, reliability, and customer satisfaction of the system. To institutionalize the use of EAM, the MTA established a program management office to set strategic directions and support operating agencies’ digitization efforts.

Construction on LIRR girders

The MTA is committed to public engagement and transparency throughout the planning, development, design, and delivery of capital projects. To allow public input in long-term MTA planning, each 20-year needs assessment is submitted to the New York State Capital Program Review Board (NYS CPRB), which includes representatives of the governor, senate, assembly, and mayor. The 20-year needs assessments then inform the five-year capital plans, which also are submitted to the NYS CPRB for review and approval the following year.

The MTA also maintains and publishes a capital program dashboard, which tracks progress on the MTA’s five-year capital plans. The dashboard is a public tool intended to increase transparency and awareness of the MTA’s capital process and project outcomes. To engage community members, the MTA dedicates outreach personnel to serve as day-to-day points of contact for projects, and hosts meetings and workshops to solicit input from elected officials, stakeholders, and the general public on priorities throughout the system and their neighborhoods.
Next steps

Over the course of the next year, in collaboration with our regional partners, we will take this 20-Year Needs Assessment and use it to guide the creation of a five-year capital plan. In order to begin translating these needs and opportunities into an initial set of concrete projects, we will consider the system’s needs holistically and identify opportunities to bundle projects together to create the most efficient and cost-effective approach. The five-year capital program will be presented on Oct. 1, 2024.

Success will depend on resources

Our ability to address the needs identified in the 20-Year Needs Assessment will depend on the resources we have available. These include:

Sufficient funding

The vision that we establish for our system relies on adequate—and timely—funding. Without this support from our critical partners in the city, state, and federal government, we will not be able to meet the ambitious goals we have set for ourselves.

Different funding scenarios will yield different results. Our top priority must be rebuilding the critical aging infrastructure at risk for catastrophic breakdown without intervention.

A low funding scenario would require us to spend the vast majority of our resources on these urgent projects, with far less funding available for improving and expanding the system.

Public engagement and support

Our work is done to benefit the public—so that the trains, buses, bridges, and tunnels the public relies on continue to be there for them. That construction work, though, can be disruptive, especially in old and constrained spaces. We need the public to be patient as we get past short-term disruptions in order to generate long-term benefits.

But it’s not enough to simply expect that of riders. We will continue to do our part, communicating directly and honestly with customers about impacts, and, just as crucially, helping them understand the reasons we’re doing the work in the first place. This partnership—between us and our riders—is absolutely essential to delivering on the promise of this plan. Our partners in the advocacy community, at organizations both large and small, will be essential in forging this link.

Strong partnerships

In addition to funding partnerships with the city, state, and federal government, we must also work together to ensure the system’s success.

Our construction projects require close coordination and collaboration with local planning and transportation departments, utility companies, local businesses, and residents. By working efficiently and collaboratively, we can minimize costs, reduce red tape, and deliver benefits to the region.

We also depend on our partners to keep the system running smoothly. Stormwater is managed separately by each municipality. The future of the MTA depends on long-term planning by the relevant municipalities to reduce the threat of flooding.

Con Edison provides the electrical capacity for us to transition our bus fleets to more sustainable designs and the power we need to keep our subways and trains running.

Successful collaborations can also yield major breakthroughs, like when the MTA and the New York City Department of City Planning worked together in 2021 on a zoning amendment that offers developers building over subway stations a density bonus if they fund accessibility upgrades. Industry partnerships are also creating jobs, building capacity in the system, and encouraging innovation.

These kinds of creative partnerships will be crucial to achieving the goals we share for our system.
Over the next 20 years, we will deliver the modern, reliable system riders deserve.

If given the resources, we can transform our vital, but aging, system into a modern transportation network that positions the region for the next 100 years.

To see the full plan, please visit future.MTA.info
20-Year Needs Assessment

Appendix

01 New York City Transit
- Subway cars, maintenance facilities, and yards
- Buses, depots, and bus maintenance facilities
- Passenger stations
- Subway infrastructure systems: Line structures, track, signals, traction power, line equipment, and communications infrastructure

02 Long Island Railroad
- Passenger vehicles and yards
- Passenger stations
- Right-of-way
- Signals, power, and communications

03 Metro-North Railroad
- Passenger vehicles and yards
- Passenger stations
- Grand Central Terminal and Grand Central Artery
- Right-of-way
- Signals, power, and communications

04 Bridges and Tunnels
- Key program highlights
- Bridges
 - Bronx-Whitestone Bridge
 - Robert F. Kennedy Bridge
 - Throgs Neck Bridge
 - Verrazano-Narrows Bridge
 - Henry Hudson Bridge
 - Cross Bay Bridge
 - Marine Parkway Bridge
- Tunnels
 - Hugh L. Carey Tunnel
 - Queens Midtown Tunnel
 - Agencywide Projects and Central Business District Tolling Program

05 MTA Police
- Facilities
- Vehicles
- Communications

06 Comparative Evaluation
- Methodology
- Results

Updated October 18, 2023
New York City Transit (NYCT), together with Staten Island Railway (SIR) and MTA Bus, operates the most extensive and highest ridership subway and bus systems in the United States. We operate 24 hours a day, 365 days a year. Our trains, buses, stations, and all auxiliary equipment and infrastructure—like rail yards, bus depots, signals, power, and communication systems—are the foundation of our network, and require substantial and sustained capital investment to address historical underinvestment and to allow us to deliver the frequent and reliable service our riders have come to expect.

Our vision for New York City’s transit system 20 years from now is one with more reliable and frequent service that is more resilient and sustainable, runs with more modern equipment, and is more accessible. The 20-Year Needs Assessment lays out a plan for us to get there.

NYCT, SIR, and MTA Bus by the numbers:
- Weekday ridership: Approximately 6.8 million (4.5 million subway and 2.3 million bus)
- 6,540 subway cars, 56 shops, and 24 rail yards
- 5,840 buses, 38 bus depots and facilities
- 493 passenger stations
- 306 station elevators and 231 escalators
- 266 miles of line structures
- 694 miles of mainline track and 1,825 track switches
- 794 miles of signal equipment and 217 signal interlockings
- 233 substations and 321 circuit breaker houses
- 209 fan plants
- 254 pump rooms and 23 deep wells
- 680 work train cars
Investment needs highlights

Over the next 20 years, our priority investment needs include:

- **Subway cars, maintenance facilities, and yards**
 - Purchasing over 3,900 subway cars to replace aging cars, expand the fleet, and improve reliability, accessibility, and passenger experience.
 - Reconstructing and upgrading car maintenance facilities at Livonia Yard and 240th Street Yard to address poor facility conditions and enable them to accommodate modern subway cars.

- **Buses, depots, and bus maintenance facilities**
 - Continuing cyclical replacement of buses, replacing about 9,000 buses over the next 20 years.
 - Transitioning to zero-emissions buses as buses are retired, achieving a full transition to a zero-emissions fleet by 2040.
 - Installing infrastructure to support the zero-emissions bus transition at depots and maintenance facilities.

- **Passenger stations**
 - Continuing station component repair programs with quicker implementation of projects as deteriorated components or other needs are identified.
 - Installing modern public address and digital information screens in every station.
 - Building new elevators and ramps to expand the number of accessible stations, in line with MTA’s goal of at least 95% of subway stations being accessible by 2055.
 - Addressing water infiltration conditions in at least 40 stations, targeting the root causes of structural deterioration.
 - Reducing extreme heat conditions in stations’ critical equipment rooms.

- **Subway infrastructure systems**
 - Ensuring structural soundness of elevated steel structures by repairing all significant defects and routinely applying or renewing protective coating systems.
 - Improving power reliability across the network by renewing or upgrading approximately 190 substations, addressing critically poor power cable and circuit breaker house conditions, and upgrading the Power Control Center and its remote control system (SCADA).
 - Improving subway performance and reliability and unlocking additional capacity by modernizing over 300 miles of signals, ensuring 90% of riders are served by modern signals.
New York City Transit appendix structure

This appendix provides an overview of our assets, their current condition, and expected investment actions to maintain these assets over the next 20 years. This appendix is divided into asset groupings, based on how our categories function together. For example, our passenger vehicles are supported by our shops, yards, and facilities. We provide a summary of each asset grouping, describe how the asset categories support each other, and then provide a 20-year vision for their maintenance and enhancement. Each asset category section then provides a more detailed description of the asset, an inventory showing their ages or the percentage of assets in poor or marginal condition, followed by the agency's investment needs and priorities for the next 20 years.

Our asset rating methodology

We perform regular and comprehensive inspections of all of our assets. Through these inspections, all assets are given a condition rating on a scale of 1 to 5, based on various factors, including age, condition assessment, performance, reliability, safety history, and location. Assets with a rating of 1 (poor) or 2 (marginal) help us identify where we need to focus investment needs the most. This rating scale is consistent with the Federal Transit Administration's Transit Economic Requirements Model scale. A brief description of the rating scale is provided below.

1. Poor (Deteriorated): Critically damaged or in need of immediate repair, well past useful life. Assets are operable with extraordinary maintenance, but have serious functional deficiencies and/or can be expected to experience potentially unacceptable stoppages over the next five years, which could have serious negative impacts on service within the existing maintenance framework. Assets require operating-funded interventions, which may include more frequent inspections and/or repairs that may include removing the asset from service until repairs can be performed. Capital investment in these assets is needed on a priority basis.

2. Marginal (Deficient): Deteriorated, in need of replacement, and may have exceeded useful life. Assets have functional deficiencies and/or can be expected to experience above-normal stoppages over the next five years, but severity of customer impacts or changes to operational practices can be held within acceptable bounds for a time within the existing maintenance framework. If capital investment is/was deferred for these assets, added maintenance and operating expenses would be expected.

3. Adequate (Acceptable): Moderately deteriorated, but has not exceeded its useful life. Assets that are not necessarily meeting all current technical and functional standards, but are considered adequate for service and can be expected to experience normal stoppages that can be fully accommodated within the existing maintenance framework. These assets may require cyclical replacement in the next five years.

4. Good: No longer new, but in good condition and still within its useful life. Assets may be slightly deteriorated, but are overall functional within the normal maintenance practices.

5. Excellent (Modernized): No visible defects, new or near new condition and may still be under warranty (if applicable). Considered to meet most or all important technical and functional standards.

It is important to note that an asset condition rating is not an indicator of safety. Safety and risk assessments are performed separately from asset condition ratings and are addressed on an ongoing basis.
NYCT and SIR operate and maintain about 6,500 passenger railcars, which are linked together to make up nearly 600 trains used for daily service. To keep our railcars in good condition throughout their 40-year lifespan, they receive regular inspections and maintenance at our railcar maintenance shops and occasionally get more extensive heavy maintenance work at our overhaul shops. When they are not in service, they are staged at one of the many yards located throughout the network.

Reliable railcars are critical to quality service and make up a significant portion of the anticipated investment needs over the 20-year timeframe. This level of investment is needed to maintain the high service level that NYCT has achieved through our past railcar purchases and comprehensive railcar maintenance program. Renewing the railcar fleet and keeping our subway car maintenance and storage facilities in good condition is essential for us to be able to provide reliable service and create a better transportation experience for riders.

Over the next 20 years, our investment needs include:

- **Subway cars**
 - Replace nearly 1,500 cars coming due for replacement in the next five years and continue lifecycle replacement of over 2,400 more cars as they reach 40 years of age.

- **Subway shops and yards**
 - Reconstruct and upgrade railcar maintenance facilities at Livonia Yard and 240th Street Yard to address poor facility conditions and enable them to accommodate the new train cars. We will also repair and rehabilitate hundreds of facility components at other shops where there are poor or marginal conditions.
 - Upgrade selected shops and yards, such as at 207 Street and Coney Island Overhaul shops, to accommodate increased maintenance needs, as well as expand Jamaica Yard to provide sufficient storage capacity for trains serving the Queens Boulevard and other lines.
 - Install low-emissions building systems and renewable power generation where feasible to reduce carbon emissions and advance MTA's sustainability goals.
Subway cars

Because our subway network is essentially two distinct systems, we have two basic types of railcars which are divided into the A Division and B Division. Our current NYCT subway fleet has 2,890 railcars in the A Division and 3,589 railcars in the B Division, for a total fleet of 6,479 railcars. With the 61 SIR railcars, the complete fleet totals 6,540 railcars.

The B Division currently operates with two different railcar sizes (60-foot and 75-foot), but is now being standardized to the shorter 60-foot railcar length. As older 75-foot railcars are replaced with newer 60-foot ones, more railcars will be needed to make up the same number of train sets. SIR has a much smaller fleet, with a total of 61 railcars currently operating and scheduled to be replaced by the ongoing R211 railcar purchase.

Asset inventory and status

We use two primary indicators to assess the condition and performance of our railcars, which together guide decisions on when further investment or replacement is warranted.

- **Useful life**: Older railcars are more prone to breakdowns, require more frequent and costly maintenance to keep in service, and are less comfortable for our passengers due to worn interiors. They also sometimes lack modern amenities or do not meet the latest accessibility standards we have for new railcars. Any railcar over the age of 40 is considered past its designed useful life. We plan to continue replacing railcars before they reach the end of their useful life.

- **Mean Distance Between Failures (MDBF)**: This is a measure of reliability that expresses the subway car’s mean (average) operating distance mileage traveled between all relevant train delay failures.
 - Investments since 1982 have increased reliability from an average of 7,000 miles between breakdowns to more than 127,000 miles today. Comparatively, today’s newer railcars’ MDBF can reach above 250,000 miles while the oldest railcars at the end of their useful lives can fall to about 40,000 miles—a six-fold difference.
 - Older railcar classes were three times more likely to undergo a “hot car” incident (revenue service vehicles with an HVAC component failure) over the past three years. These older railcar types are equipped with underbody-mounted HVAC units, compared to the newer railcar models with modern overhead units.

For the A Division, 39% of cars are reaching their expected useful life and are planned for replacement starting in the current capital program and continuing in the next. For the B Division all railcars except for the R46 model are within their useful life. Replacement of the R46s—the system’s oldest railcars—is already funded under the R211 railcar project, which has entered the delivery phase this year. The current fleet of 61 SIR railcars has exceeded its useful life and is on track to be replaced with soon-to-be-delivered R211 railcars as well.

In addition to reliability benefits, new railcars will be equipped to utilize a more modern signaling system, known as Communications Based Train Control (CBTC), which leads to even greater reliability of service. See below the section on Signals for definition and benefits of CBTC.

1. The A Division has narrower car widths and includes the numbered routes and the 42nd Street Shuttle, the remaining parts of the former Interborough Rapid Transit Company (IRT). The B Division has wider car widths and is comprised of the lettered routes along with the Rockaway Park and Franklin Avenue Shuttles, the combined remaining parts of the former Brooklyn-Manhattan Transit Corporation (BMT) and the city-owned Independent Subway System (IND).
Investment needs

Periodically renewing the railcar fleet is essential to providing reliable service and creates a better experience for riders. Our newest railcars have equipment failures much less frequently than older railcars. They also have improved features like wider doors to expedite boarding and alighting, security cameras, digital information displays, and automated announcements.

Over the next 20 years, we plan to continue to purchase railcars as they reach the end of their useful lives. New railcars will be delivered with CBTC equipment installed.

Over the next 20 years, we need to:

- Replace over 3,900 subway cars:
 - Approximately 1,500 railcars to replace R62, R62A, R68, and R68A railcars. (Some of these cars may be funded from the 2020-2024 Capital Program.)
 - Approximately 1,600 railcars will be needed for the normal replacement of the R142/R142A and R188 converted car fleets starting in the 2040-2045 timeframe.
 - Near the end of the 20-year period, we will begin replacing the approximately 200 R143 railcars and 1,700 R160 railcars.

- Ensure we have the right fleet size for the future by assessing fleet growth needs before new subway car purchases.

- Evaluate retrofitting existing R142/R142A with CBTC equipment, depending on progress of planned signal system upgrades and if needed to expedite the conversion of more lines to the CBTC signaling system.

Shops and yards

Our railcar maintenance and overhaul shops are essential to keeping our subway railcars in good working order throughout their 40-year lifespan. Together, these facilities house the inspection, repair, and comprehensive component change-outs and overhauls, as well as other repairs that might be needed. We also have a separate set of facilities used to support Maintenance of Way (MOW) and other divisions and their work in keeping the signals, electronics, track, structures, stations, and other assets in good working order.

Our yards are large properties that we use for the storage of passenger railcars when they are not in service and where we do car cleaning and washing of railcar exteriors. As fleets expand, additional train storage space may be needed.

Asset inventory and status

Many of the maintenance shops and facilities have many critical elements that are not in good condition, and some facilities are over 100 years old. These facilities’ components, their functional areas, production capacities, and space configurations are often not in good condition or are not adequate for our staff to be able to optimally perform work on new technology rail fleets that have more electronic components.

<table>
<thead>
<tr>
<th>Asset/Component</th>
<th>Total</th>
<th>Percent in Poor/Marginal Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roof</td>
<td>15</td>
<td>47%</td>
</tr>
<tr>
<td>HVAC</td>
<td>15</td>
<td>47%</td>
</tr>
<tr>
<td>Exterior</td>
<td>15</td>
<td>33%</td>
</tr>
<tr>
<td>Building Structure</td>
<td>15</td>
<td>73%</td>
</tr>
<tr>
<td>Electrical</td>
<td>15</td>
<td>33%</td>
</tr>
<tr>
<td>Elevators</td>
<td>8</td>
<td>63%</td>
</tr>
<tr>
<td>Employee Facilities</td>
<td>15</td>
<td>80%</td>
</tr>
<tr>
<td>Heavy Shop Equipment</td>
<td>41</td>
<td>10%</td>
</tr>
</tbody>
</table>

Inventory and status

207 St Yard, NYCT
Inventory and status

<table>
<thead>
<tr>
<th>Asset/Component</th>
<th>Total</th>
<th>Percent in Poor/Marginal Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Railcar Overhaul Shops (2 Overhaul Complexes, 15 Sub-shops)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roof</td>
<td>15</td>
<td>13%</td>
</tr>
<tr>
<td>HVAC</td>
<td>15</td>
<td>67%</td>
</tr>
<tr>
<td>Exterior</td>
<td>15</td>
<td>13%</td>
</tr>
<tr>
<td>Building Structure</td>
<td>15</td>
<td>73%</td>
</tr>
<tr>
<td>Electrical</td>
<td>15</td>
<td>13%</td>
</tr>
<tr>
<td>Elevators</td>
<td>12</td>
<td>100%</td>
</tr>
<tr>
<td>Employee Facilities</td>
<td>15</td>
<td>47%</td>
</tr>
<tr>
<td>Heavy Shop Equipment</td>
<td>246</td>
<td>36%</td>
</tr>
<tr>
<td>Rail Storage Yards (24 Rail Yards)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCTV*</td>
<td>2</td>
<td>0%</td>
</tr>
<tr>
<td>Fencing</td>
<td>24</td>
<td>8%</td>
</tr>
<tr>
<td>Hydrants</td>
<td>24</td>
<td>8%</td>
</tr>
<tr>
<td>Lighting</td>
<td>24</td>
<td>55%</td>
</tr>
<tr>
<td>Yard Track (miles)</td>
<td>102</td>
<td>25%</td>
</tr>
<tr>
<td>Yard Signal</td>
<td>23</td>
<td>42%</td>
</tr>
<tr>
<td>Yard Switch</td>
<td>874</td>
<td>19%</td>
</tr>
</tbody>
</table>

* Only two yards currently have CCTV systems that meet the capital-eligible technical standards.

Below, Livonia Yard, NYCT
Investment needs

Our investment needs include addressing poor and marginal building components and making upgrades to the shops and yards to provide a safer and more efficient workplace. Additionally, an ongoing condition survey of all subway facilities will provide a more comprehensive assessment of the facilities to be used to prioritize specific capital projects in future capital programs.

To meet energy efficiency and emissions reduction goals, we will also explore opportunities to upgrade building HVAC equipment, incorporate renewable energy technologies (e.g., rooftop solar photovoltaics), conserve energy, and reduce GHG emissions through other means. We will actively work towards integration of energy efficiency and renewable energy strategies, wherever feasible.

Over the next 20 years, we need to:

- Increase the pace of investment to address the repair and rehabilitation of hundreds of facility building components and systems that are in poor or marginal conditions. Over 200 facility components are rated poor or marginal at our passenger railcar maintenance and MOW facilities combined.
- Reconstruct and reconfigure selected facilities, such as the 240th Street and Livonia car maintenance shops. These facilities require reconfigurations and upgrades to allow them to service the new car fleets' roof mounted air conditioning (HVAC) units and to provide working aisle widths between shop tracks that meet industry standards and best practices.
- Improve car HVAC and A/C traction motor maintenance capacity at 207th Street and Coney Island facilities to meet expected workloads from thousands more railcar HVAC units and A/C motors coming online with new fleets.
- Add to SIR's car washing capabilities and address needs at its non-revenue vehicle repair shop.
- Install additional security systems including CCTV and Laser Intrusion Detection Systems at yards and maintain adequate fencing and lighting to prevent unauthorized entries and damage to railcars or yard assets.
- Expand shop and yard capacity where needed to support a larger fleet
- Upgrade non-revenue support facilities, such as at 38th St and Westchester Yards, which are vital hubs for our work train fleet.
- Install electric vehicle charging equipment dedicated for NYCT use in appropriate locations to meet MTA goals of transitioning to 100% zero-emissions light-duty non-revenue vehicles by 2035 and medium/heavy-duty non-revenue vehicles by 2040.
- Advance climate resilience measures in NYCT facilities facing climate change hazards, including flooding and extreme temperature risks.
NYCT and MTA Bus together operate the largest public bus system in the U.S., carrying 1.4 million riders each weekday (16% of the nation’s bus passengers) and operating 10% of all the public transit buses in the nation. More than 90% of New York City residents live within a quarter mile of a bus stop, and buses provide affordable and safe mobility throughout the five boroughs. Our buses are fully accessible to riders with mobility disabilities, and each bus, regardless of propulsion or type, combats congestion and greenhouse gas emissions by carrying far more people than a private vehicle.

Depots and bus maintenance facilities are where buses are fueled, inspected, serviced, and parked when not in use. We have dozens of bus depots and other support facilities located throughout the city, and these facilities range in age from brand new to more than 100 years old.

The MTA has initiated a transition to a 100% zero-emissions bus fleet by 2040, a central component of our agencywide goal to reduce greenhouse gas emissions 85% by 2040. The zero-emissions bus transition will reduce operational emissions by 530,000 tons annually compared to a 2015 baseline. The transition will also eliminate carbon monoxide and nitrous oxide emissions and significantly reduce particulate matter compared to the current bus fleet.

Over the next 20 years, our investment needs include:

- **Buses**
 - Continue regular replacement of buses, replacing about 9,000 buses over the next 20 years. As buses are retired, we will transition to zero-emissions buses, achieving a full transition to a zero-emissions fleet by 2040.

- **Depots and facilities**
 - Upgrade all 28 depots, the two central maintenance facilities, and other support locations with the infrastructure to support zero-emissions buses, as well as non-revenue vehicle fleets.
 - Continue depot facility component repairs and normal replacement of depot heavy equipment, based on their condition and in coordination with zero-emissions depot modifications.
 - Install zero- or low-emissions building systems and renewable energy generation infrastructure at all depots.
 - Reduce exposure to flood risks that are exacerbated by climate change.
Our bus fleet consists of approximately 5,800 buses of various vehicle and propulsion types. Prior purchases coupled with our service program, including preventative maintenance and general overhauls, have resulted in fleet reliability improving from less than an average of 1,000 miles MDBF in 1982 to more than 7,000 miles today.

Asset inventory and status

To best serve our customers, our buses must uphold a high standard for comfort and reliability. As buses age, maintenance needs increase, increasing operating costs to keep older buses in service. As such, we have a cyclical replacement program for buses, and we plan to replace every bus as it reaches approximately 12 years in age. As a part of the planning for each five-year capital program, fleet age is reviewed along with expected changes in capacity requirements to accommodate growth, conversions, and other potential service adjustments.

The current bus fleet is composed of clean diesel, hybrid diesel-electric, compressed natural gas (CNG)-fueled buses, as well as zero-emissions buses. We made our first purchase of zero-emissions buses in 2019, with an order of 15 articulated battery-electric buses. We have either procured or are in the process of procuring 560 battery-electric buses to replace those buses reaching their maximum age. In addition to the existing 15 articulated buses, 60 standard buses are expected to start to be delivered in 2023, and the remaining 485 will be delivered starting in 2025. As of 2020, all CNG buses are fueled with renewable natural gas, a biogas derived from organic waste. This offers a reliable and clean fuel solution without sacrificing vehicle performance.

- **Standard bus**: These operate on most local routes; typically, 40 feet long. Currently there are 3,662 standard buses, and 7% are at or beyond expected useful life.
- **Express bus**: Many operate only during weekday rush hours; looks like a coach bus, with routes generally between Manhattan and another borough; typically, 45 feet long. Currently there are 1,020 over-the-road buses, and 5% are at or beyond their expected useful life.
- **Articulated bus**: Vehicles have increased capacity and length compared to standard buses; look like two standard buses connected by a flexible middle; typically, about 60 feet long. Currently there are 1,158 articulated buses, and 14% are at or beyond expected useful life.

Investment needs

The transition to a zero-emissions bus fleet represents a significant commitment of the 20-year capital needs for NYCT. As we transition, the normal replacement cycle for buses will include an increasing number of purchases of zero-emissions vehicles, and beginning in 2029, all new bus purchases will be zero-emissions. For the next few years, since there are limited bus suppliers with increased zero-emissions demand, we anticipate challenges with supply. However, our phased-in approach, as well as our test and evaluation fleets, give us an opportunity to apply lessons learned while we undergo this transformation.

Our current bus purchase plan for 2025-2044 is summarized in the table below. The full fleet is replaced on a staggered basis, and buses bought in the first five years will be replaced again at the end of the period. Approximately 9,000 replacement buses will be needed over the coming 20-year timeframe.

Changes in ridership or policy that determines bus frequency may affect future bus inventory needs. Inventory needs and planned purchases will be assessed periodically.

<table>
<thead>
<tr>
<th>NYCT and MTA Bus Fleet Replacement / Transition Plan</th>
<th>2025-2029</th>
<th>2030-2034</th>
<th>2035-2039</th>
<th>2040-2044</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Buses</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Bus (any bus type)</td>
<td>758</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>New Bus ZEF</td>
<td>700</td>
<td>1,455</td>
<td>1,880</td>
<td>1,022</td>
</tr>
<tr>
<td>Articulated Buses</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Bus (any bus type)</td>
<td>425</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>New Bus ZEF</td>
<td>200</td>
<td>195</td>
<td>760</td>
<td>395</td>
</tr>
<tr>
<td>Express Buses</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Bus (any bus type)</td>
<td>300</td>
<td>-</td>
<td>335</td>
<td>695</td>
</tr>
<tr>
<td>New Bus ZEF</td>
<td>-</td>
<td></td>
<td>138</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>2,383</td>
<td>1,985</td>
<td>3,335</td>
<td>1,555</td>
</tr>
</tbody>
</table>

Additionally, we are working on several new bus seating configurations that will better accommodate riders of all abilities, as well as opportunities for visual and audible communications, such as hearing induction loops (a special type of sound system for use by people with hearing aids). Other enhancements like exterior cameras for Automatic Bus Lane Enforcement will continue. To improve passenger security, we more than tripled the number of cameras onboard buses in 2022 and are adding at least 600 more in 2023. While many of our new buses will have these features built in, staying up to date with bus innovations like these requires regular investment.

| Articulated electric bus | Standard bus |
Depots and bus maintenance facilities

Supporting our extensive bus fleet are dozens of major facilities encompassing over 6 million square feet across our bus depots, central maintenance facilities, and shops throughout the region. Each of these require ongoing maintenance, major modifications to serve our evolving bus fleet, and strategic investments to tackle the challenges posed by climate change. Due to the facilities’ various ages and design, there are many different structure types and sizes, equipment and machinery housed, types of buses stored, and kinds of work that each facility can support. For example, some bus depots are equipped to service CNG buses, while other depots have been modified for articulated buses.

Inventory and status

<table>
<thead>
<tr>
<th>Depot/Facility Component</th>
<th>Total</th>
<th>Percent in Poor/Marginal Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roof</td>
<td>38</td>
<td>29%</td>
</tr>
<tr>
<td>Boiler</td>
<td>38</td>
<td>21%</td>
</tr>
<tr>
<td>Air Curtain</td>
<td>31</td>
<td>26%</td>
</tr>
<tr>
<td>Ventilation</td>
<td>38</td>
<td>42%</td>
</tr>
<tr>
<td>Architectural/Structural</td>
<td>38</td>
<td>24%</td>
</tr>
<tr>
<td>Electrical</td>
<td>38</td>
<td>37%</td>
</tr>
<tr>
<td>Lighting</td>
<td>36</td>
<td>26%</td>
</tr>
<tr>
<td>Elevator</td>
<td>19</td>
<td>16%</td>
</tr>
<tr>
<td>Employee Facilities</td>
<td>38</td>
<td>39%</td>
</tr>
<tr>
<td>Admin Office</td>
<td>38</td>
<td>45%</td>
</tr>
<tr>
<td>Emergency Generators</td>
<td>31</td>
<td>42%</td>
</tr>
<tr>
<td>Fire Alarm and Suppression</td>
<td>38</td>
<td>21%</td>
</tr>
<tr>
<td>Bus Wash</td>
<td>29</td>
<td>7%</td>
</tr>
<tr>
<td>All Rated Bus Depot/Facility Components</td>
<td>452</td>
<td>31%</td>
</tr>
</tbody>
</table>

Investment needs

With the expansion of the zero-emissions bus fleet, depots must be adapted for electric bus charging, use of alternative fuels, and other functions. This transition will require an unprecedented investment in new charging infrastructure and power supplies, like pantographs and chargers. In addition, we will have to make significant investment to substantially increase the electrical loads (two to four times the capacity needed for depots without electric buses), as well as HVAC modifications to maintain optimal functionality of charging equipment, structural modifications to support the weight of charging equipment, data and communication infrastructure, and enhanced fire suppression. Installing these capabilities requires significant modifications to the buildings’ structural and electrical systems. As depots are selected for zero-emissions bus fleet deployments, we will ensure that zero-emissions upgrades are done in tandem with other depot component and condition investments.

In parallel to these ongoing maintenance needs, we will evaluate opportunities for energy-efficient equipment, to phase out fossil fuel building systems, and to incorporate on-site renewable energy generation. For facilities vulnerable to coastal and inland flooding, we will consider strategies such as porous pavements and subsurface detention to reduce stormwater runoff, back-flow preventers to prevent flood water flow into buildings, deployable coastal flood panels at garage doors and other openings, and ensuring exterior walls at buildings are watertight.

Over the next 20 years, we need to:

- Increase the pace of repairing, renovating, and replacing poor or marginal depot and facility components and equipment to clear a backlog of assets that are not in adequate condition. Hundreds of facility components (approximately one third of all major components) are currently in poor or marginal condition.
- Repair depot components as they reach their lifespan limits, including roofs, facades, and systems.
- Implement depot upgrades and modifications to achieve zero-emissions fleet transition goals.
- Incorporate materials, equipment, and designs that reduce exposure to climate risks and the facilities’ carbon footprint.

Asset inventory and status

We monitor the condition of bus depots, shops, and maintenance facilities on a component basis, and we make investment prioritizations based on the physical conditions and/or age of each component, depending on the component. These components include things like structural elements, building systems, lighting, repair and cleaning equipment, and more. Moving forward, we will analyze the needs for new assets that will reach the end of their typical lifespan over the next 20 years.
With 493 stations, our transit network has more stations than any other subway or metro network in the world. Some of these stations are nearly 120 years old, with many others at or over 100 years in age. The age and sheer size of our stations’ overall footprint—more than 16 million square feet and 16,000 components—leads to substantial capital and maintenance needs. Below we discuss our stations’ structural component needs, and we also address some of the other major asset types found in our stations, which we summarize in two sub-sections: one on accessibility, elevators, and escalators and another covering station communication systems.

Over the next 20 years, our investment needs include:

- **Station structures and components**
 - Continue station component repair programs with quicker implementation of projects when deteriorated components or other needs are identified.
 - Enhance security by improving lighting, CCTV, and other station elements. New lighting is also part of our strategy to make stations more energy efficient.
 - Improve passenger circulation at chronically overcrowded locations by adding stairs or reconfiguring station elements.

- **Accessibility, elevators, and escalators**
 - Build new elevators and ramps to expand the number of accessible stations, in line with MTA’s commitment of at least 95% of subway stations being accessible by 2055.
 - Ensure the reliability of existing elevators and escalators by replacing approximately 350 station elevators and 150 escalators as they reach the end of their useful lives.
 - Replace emergency exit doors at fare arrays with wide-aisle gates to improve access to the system.

- **Station communication systems**
 - Upgrade customer communication systems in stations so that all stations have public address systems and customer information screens that can convey audio and text messages sent from staff at our centralized train control centers.
Station structures and components

This asset category refers to all the major structural elements that comprise our stations, such as floors, walls, ceilings, columns, and stairways, as well as the many architectural finishes that make up our stations’ platforms and mezzanines.

Asset inventory and status

Beginning in the 2010-2014 Capital Program, we adopted a component-based strategy for station capital investment, which focuses on fixing or replacing the most deteriorated station components at a greater quantity of stations rather than performing more costly comprehensive station renovations at a more limited number of stations.

In implementing this methodology, we begin by inspecting and assessing the condition of our stations’ structural components—platforms, stairs, canopies, ventilators, floors, columns, walls, ceilings, and more—every five years. We assess and keep track of over 16,000 unique station components throughout our network. This strategy emphasizes essential structural components and allows us to address prioritized needs at a sustainable pace that also considers the varying lifespans of different components.

Asset inventory and status

<table>
<thead>
<tr>
<th>Asset</th>
<th>Total</th>
<th>Percent in Poor/Marginal Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platform Canopies</td>
<td>436</td>
<td>8%</td>
</tr>
<tr>
<td>Mezzanine Floors, Columns, Walls, and Ceiling</td>
<td>3,246</td>
<td>10%</td>
</tr>
<tr>
<td>Platform Edges</td>
<td>1,198</td>
<td>36%</td>
</tr>
<tr>
<td>Platform Floors, Columns, Walls, and Ceilings</td>
<td>3,276</td>
<td>13%</td>
</tr>
<tr>
<td>Stairways</td>
<td>5,502</td>
<td>13%</td>
</tr>
<tr>
<td>Passive Ventilation Systems</td>
<td>2,425</td>
<td>39%</td>
</tr>
<tr>
<td>Windscreens (above-ground station platform fencing)</td>
<td>214</td>
<td>21%</td>
</tr>
<tr>
<td>Electrical Distribution Rooms</td>
<td>916</td>
<td>15%</td>
</tr>
</tbody>
</table>

Investment needs

Going forward, we plan to accelerate the capital repair and renewal process and quickly implement the results of rolling comprehensive condition surveys that are currently taking place.

Over the next 20 years, we need to:
- A faster pace of repairing or replacing station components (approximately 1,500 per each capital program): over 5,000 platforms, 4,000 platform components, and 2,400 street vents, as well as ventilators, electrical utility rooms and other elements in poor condition.
- Reduce water infiltration conditions at approximately 40 station locations.
- Evaluate ways to control temperatures in stations’ critical equipment rooms that house electrical and telecommunications equipment.
- Reduce energy usage by upgrading lighting to LED or other energy saving types of lighting. Currently, about three-quarters of station lighting is less energy efficient than modern standards.
Accessibility, elevators, and escalators

Elevators and ramps are critical assets that ensure subway access for customers with disabilities and others who cannot use the stairs, such as caregivers with strollers, older adults, or customers with luggage. These assets also are also necessary for us to comply with the Americans with Disabilities Act (ADA). In 2022, we reached a historic settlement with accessibility advocates that affirmed our commitment to accessibility in the subway system and outlined a commitment to make at least 95% of the subway and SIR stations accessible by 2055, if our capital plans are adequately funded.

In addition to elevators and ramps, escalators are also important assets for facilitating access from the street to the platform, particularly at deeper stations. At some deep stations, elevators and escalators are the sole means of access and egress to the platform, and if they fail to operate, trains must bypass the station.

Asset inventory and status

Our primary considerations for elevator and escalator lifecycle replacements center on age and projected lifespan. Older elevators and escalators are likely to break down more frequently. We also consider obsolescence and unavailability of spare parts, reliability, and the number and frequency of maintenance calls. Because elevators and escalators require increased maintenance as they age and some parts become more costly to replace, we generally aim to replace elevators and escalators as they reach the end of their approximate 17-22-year useful life.

Using existing funding, we are progressing rapidly on expanding accessibility and ensuring continued access to stations that are already accessible. We are replacing 78 existing elevators and 66 escalators as part of the normal lifecycle replacement process, as well as installing over 170 new elevators and ramps to expand accessibility.

Investment needs

We need to continue our increased pace of investment to make subway stations accessible and to ensure that our existing elevators and escalators remain functional and reliable. In addition to replacing our existing station elevators, as we install more elevators and expand accessibility throughout the network, we will have an increasing number of elevators to maintain in the future.

Over the next 20 years, we need to:

- Continue the increased pace of elevator and ramp installation to make more stations accessible, in line with our commitment for 95% subway and SIR accessibility by 2055.
 - When identifying specific stations that will be made accessible during each capital planning cycle, we consider many factors including coverage, destination significance, ridership and transfers, demographics, constructability, and cost.
- Continue to replace elevators and escalators as they reach their useful age.
 - The large expansion of the station accessibility program over the next 20 years will ultimately lead to a doubling of the lifecycle replacement needs by the 2040-2044 timeframe; approximately 350 elevators will be due for replacement over the next 20 years.

<table>
<thead>
<tr>
<th>Asset</th>
<th>Total</th>
<th>Percent in Poor/Marginal Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elevator - Hydraulic</td>
<td>246</td>
<td>0%</td>
</tr>
<tr>
<td>Elevator - Traction</td>
<td>60</td>
<td>0%</td>
</tr>
<tr>
<td>Escalator</td>
<td>231</td>
<td>6%</td>
</tr>
</tbody>
</table>

Investment needs
Station communication systems

Our communication infrastructure is comprised of several comprehensive and interrelated systems that support several other asset types such as signals. In this section, we will focus specifically on communication assets that are found in subway and SIR stations, while the system’s underlying communication infrastructure is addressed in a separate section below.

The communication system elements found in our stations include station public address systems, digital screens in stations, and Help Point intercoms, all of which are key ways for us to provide passengers with train arrival times and other information that may affect their trips. Because our station fare collection system (and its related components), as well as our station security systems are dependent on the communication systems in our stations, these systems are also discussed here.

All of these communication systems and their dependent assets and components are composed of many elements that need frequent upgrade or renewal.

Investment needs

Over the next 20 years, we are also prioritizing installing and upgrading audio and visual communication so we can provide timely and accurate travel information, providing better station security, and completing roll out of a simpler fare payment and more secure fare control systems.

One of the capabilities we are planning for in the next twenty years is the ability for riders to receive both audio and visual messages in real time in every station.

Asset inventory and status

The condition of our station communication system assets is assessed based on age, parts obsolescence, and capability. It is essential for these assets to meet current functional requirements, so communications assets that do not are considered to be in poor condition.

One of the capabilities we are planning for in the next twenty years is the ability for riders to receive both audio and visual messages in real time in every station.

Investment needs

Over the next 20 years, we are also prioritizing installing and upgrading audio and visual communication so we can provide timely and accurate travel information, providing better station security, and completing roll out of a simpler fare payment and more secure fare control systems.

Over the next 20 years, we need to:

- Award projects to upgrade public address and customer information screens at 244 stations by 2030.
- Help Points will be renewed or replaced over the next 20 years as these devices reach the end of useful life.
- CCTV is an integral part of the security and safety strategy at stations as well. In the coming 20 years, we will improve our passenger identification and other CCTV systems to the latest security standards, replacing all poor condition passenger identification CCTVs and at access control locations. We will also install camera systems at stations with only passenger identification CCTVs.
- Improve fare collection by completing transition to the OMNY system, making lifecycle replacements of existing electronic turnstiles with upgraded turnstiles, and introduce other fare collection solutions guided by the findings of the MTA’s Blue-Ribbon Panel on Fare Evasion.
- Improve access to the system by replacing ADA farecard entry units at current and future accessible stations with wide-aisle gates.
- Implement technological advancements such as track intrusion detection once they have been evaluated and proven effective in our station environment.

<table>
<thead>
<tr>
<th>Asset</th>
<th>Total</th>
<th>Percent in Poor/Marginal Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Address/Customer Information Screens</td>
<td>472</td>
<td>52%</td>
</tr>
<tr>
<td>Help Points</td>
<td>1,886</td>
<td>1%</td>
</tr>
<tr>
<td>ADA Farecard Access System</td>
<td>278</td>
<td>0%</td>
</tr>
<tr>
<td>Fare Collection Vending Machines (transitioning to configurable vending machines and changing quantity for OMNY cards)</td>
<td>1,720</td>
<td>0%</td>
</tr>
<tr>
<td>Fare Collection Electronic Turnstiles</td>
<td>4,461</td>
<td>0%</td>
</tr>
<tr>
<td>Emergency Booth Communication System</td>
<td>478</td>
<td>0%</td>
</tr>
<tr>
<td>NYCT Station CCTV (cameras, monitors, and recorders for emergency alarm, passenger ID, police security, platform edge, and crowd control)</td>
<td>11,210</td>
<td>56%</td>
</tr>
<tr>
<td>SIR Station CCTV</td>
<td>406</td>
<td>100%</td>
</tr>
</tbody>
</table>
Our right-of-way infrastructure includes line structures, track, signals, traction power, and line equipment. All are essential to get our riders to and from their destinations safely and on time.

- Line structures are the structures on which the tracks sit, which include bridges, elevated steel, viaduct sections, under river tubes, subway tunnels, embankments, and open cuts.
- Track and switches constitute the fixed guideway on which trains travel and are two of the most critical assets for safe, efficient, and reliable train service.
- Signals are a train control system that ensure trains maintain safe distances from each other and travel at safe speeds.
- The traction power system provides electricity via the third rail that provides propulsion power for trains, as well as lighting and AC on trains.
- Line equipment refers to the array of equipment distributed along the right-of-way, including tunnel lighting, ventilation plants, pump rooms, and deep wells.

Over the next 20 years, our investment needs include:

- **Line structures**
 - Maintain and ensure structural soundness of elevated steel structures, repair all significant defects, and routinely apply or renew protective coating systems.
 - Continue the line structure component repair program for subway, viaduct, and other line structure types with an increased investment pace than has been conducted in previous years.

- **Track**
 - Continue to replace 60-70 miles of mainline track and hundreds of switches in each capital program as their condition warrants.

- **Signals**
 - Improve subway on-time performance and reduce crowding by modernizing 315 more signal miles, from 234 signal miles already complete or underway to 549 total signal miles, improving service for about 90% of all trips. This will:
 - Reduce delays due to signal failure by 44% systemwide.
 - Lower signal maintenance incidents by 22% systemwide.
 - Where modern technology signals have already been installed, ensure continued reliability by replacing the signals as they reach the end of their expected useful life.

- **Traction power**
 - Ensure service continuity and improve power reliability network-wide by addressing critically poor power cable and circuit breaker house conditions and addressing a backlog of repairs for about 300 major substation components. Beyond that, we will need to invest in hundreds of major substation components over the next 20 years to keep them in adequate condition.
 - Improve management of the power system by completing the modernization of the power system’s remote management system.

- **Line equipment**
 - Continue component replacement and upgrades at pump and fan locations based on condition.
 - Evaluate tunnel ventilation and construct new fan plant facilities as needs and priorities dictate.
 - Continue periodic upgrades of deep wells and tunnel lighting.
Line structures

Asset inventory and status

Over time, exposure to the elements and heavy usage results in structural defects that are identified through periodic inspections. These defects are classified and prioritized for repair according to a defect's severity or concentration of defects in an area. Unfortunately, the historical pace of defect correction has not been sufficient due to constraints on conducting structural work along the active right-of-way. The inventory and status table shows line structure inventory and the respective high defect concentration mileage, which is an indication of high priority needs.

Exposed elevated structures benefit greatly by being protected with a robust paint system that can prevent defects due to corrosion. Therefore, we track elevated structures and monitor where the paint coating is reaching the end of its useful life so that paint investments can be made that minimize future costly defects. Additionally, we are implementing a new elevated steel structure painting technique that addresses any existing corrosion on the steel structure through the application of an abrasive blast technique and applies a more durable paint that will protect the elevated steel structure from critical defects. The pace of painting needs to increase, in order to ensure that all paint is in good condition.

<table>
<thead>
<tr>
<th>Structure Type</th>
<th>Route Miles</th>
<th>Percentage of Miles with High Defect Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elevated</td>
<td>61.0</td>
<td>8%</td>
</tr>
<tr>
<td>Viaduct</td>
<td>9.3</td>
<td>56%</td>
</tr>
<tr>
<td>Open Cut</td>
<td>10.6</td>
<td>5%</td>
</tr>
<tr>
<td>Subway</td>
<td>155.4</td>
<td>29%</td>
</tr>
<tr>
<td>Embankment</td>
<td>15.2</td>
<td>2%</td>
</tr>
<tr>
<td>Total</td>
<td>251.5</td>
<td>22%</td>
</tr>
</tbody>
</table>

SIR Inventory and status

<table>
<thead>
<tr>
<th>Structure Type</th>
<th>Route Miles</th>
<th>Percent in Poor/Marginal Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>At-Grade</td>
<td>12.0</td>
<td>83%</td>
</tr>
<tr>
<td>Bridge</td>
<td>0.4</td>
<td>24%</td>
</tr>
<tr>
<td>Elevated</td>
<td>1.1</td>
<td>100%</td>
</tr>
<tr>
<td>Open Cut</td>
<td>1.0</td>
<td>0%</td>
</tr>
<tr>
<td>Tunnel</td>
<td>0.2</td>
<td>100%</td>
</tr>
<tr>
<td>Fencing</td>
<td>27.0</td>
<td>8%</td>
</tr>
</tbody>
</table>

Investment needs

Over the next 20 years, we need to:

- Increase the pace to clear backlogs of thousands of high priority defects on all line structures with emphasis on high defect concentration areas.
- Repaint steel structures using the most thorough techniques - abrasive blasting that removes paint to bare steel-and applying new high performance and durable coatings; repainting provides these structures with the best protection from corrosion.
- Completing a full painting cycle on elevated structures.
- Waterproof SIR bridges, making drainage improvements and repair existing bridge deck damage.
Investment needs

Based on the condition survey results, track replacement and renewal projects are prioritized for locations where there are switches or track segments rated as having less than six years of useful life remaining. Additionally, the ongoing rollout of CBTC in the 2025-2044 period will require all switches within the limits of CBTC projects to be assessed to determine their utility and confirm if they should be replaced, reconfigured, or removed altogether. A portion of the planned switch investment may be packaged with this CBTC work.

Over the next 20 years, we need to:

- Rebuild or replace approximately 60-70 miles of mainline track and 250 mainline switches per five-year program. Additional switches or track may also be replaced on specific lines to work with the new CBTC systems as well.
- Address SIR track, we will address locations approaching the end of their service life with approximately 32 miles of track and 57 switches forecasted needing replacement over the 20-year timeframe.

Asset inventory and status

We assess the condition of every segment of track several times each month on a scheduled basis to identify locations needing maintenance repairs. We inspect switches with joint teams of track and signal maintainers so they can perform immediate maintenance. For capital investments, we assess all track segments and switches for their remaining useful life approximately every four years. These remaining life assessments yield information that enables the track and switch replacement program to target priority location supports, which mean we have kept track and switches in 100% good repair since the 1990s.

<table>
<thead>
<tr>
<th>Asset</th>
<th>Total Miles or Number</th>
<th>Miles/Number (Remaining Life Less Than 6 Years)</th>
<th>Percent with Remaining Life Less Than 6 Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mainline Revenue</td>
<td>665 Miles</td>
<td>68</td>
<td>11%</td>
</tr>
<tr>
<td>Non-Revenue</td>
<td>39 Miles</td>
<td>5</td>
<td>12%</td>
</tr>
<tr>
<td>Yard</td>
<td>102 Miles</td>
<td>14</td>
<td>13%</td>
</tr>
<tr>
<td>Mainline Switches</td>
<td>1,770</td>
<td>275</td>
<td>16%</td>
</tr>
<tr>
<td>Yard Switches</td>
<td>874</td>
<td>97</td>
<td>11%</td>
</tr>
<tr>
<td>SIR - Mainline</td>
<td>29 Miles</td>
<td>2</td>
<td>7%</td>
</tr>
<tr>
<td>SIR - Non-Revenue</td>
<td>3 Miles</td>
<td>0.3</td>
<td>11%</td>
</tr>
<tr>
<td>SIR - Switches</td>
<td>62</td>
<td>8</td>
<td>13%</td>
</tr>
</tbody>
</table>

Note: Track segments and switches with less than six years of estimated remaining useful life are prioritized for replacement.
Signals and train control

Our signal system governs the movement of trains along the right-of-way, ensuring that trains operate at safe speeds and maintain safe distances from other trains. Signals also provide instructions to train operators so they know when they can proceed safely. The more modern signals within the system share train location information to centralized train service supervision at the rail control center. The signal system also consists of interlockings, which are interconnected arrangements of switches and signals that allow for safe movement of trains.

Investment needs

To increase service reliability, minimize disruptions and delays, and provide the ability to increase service, we must continue modernization of our signaling system. To facilitate this modernization effort, substantial investment is also required in CBTC enabled railcars, work trains, RCC information systems, power capacity improvements, as well as fiber and radio infrastructure upgrades. Modernization will be prioritized in areas where signals are beyond their operational lifespan or will reach it by 2044. In addition, to drive five-year capital program prioritization and sequencing, we will continue assessing ridership patterns, signal asset reliability, on-time performance, and operational constraints.

Over the next 20 years, we need to:

- Improve subway on-time performance and reduce crowding by expanding modernized signaling from approximately 234 signal miles (already complete or underway) to 549 total signal miles, resulting in improved service for about 90% of all trips.
- Renew hardware and software on lines that already have CBTC as part of cyclical replacement to keep the systems up to date.

Currently, NYCT’s signal system utilizes two types of technology: fixed-block electro-mechanical signaling and modern digital moving-block technology known as Communications-Based Train Control (CBTC). Fixed-block relies on technology that dates to the opening of the subway over 110 years ago. It uses wayside track circuits, signal heads, and train stop arms to enforce speed restrictions and safe distance between trains, as shown in the figure above.

CBTC uses carborne and wayside radio equipment, train operator displays, and computerized dispatch systems to enforce “virtual blocks” that govern speed and train separation. CBTC allows trains to move closer together than fixed block signaling, which increases throughput capacity and allows service to be recovered from disruptions more quickly. Paired with advanced Automated Train Supervision (ATS) systems, CBTC also allows more accurate train movement monitoring at the Rail Control Center (RCC) and more accurate customer information.

So far, signal modernization has been completed on the L and 7 lines, which are our highest performing lines in terms of on-time performance. Signal modernization is currently underway on the Queens Boulevard, Culver, 8th Avenue, and Crosstown lines. Significantly increased investment in the 2020-2024 program also means we plan to award signal modernization projects on the Fulton, 6th Avenue, and 63rd Street Lines by the end of 2024.

Beyond the projects above, 529 miles of signaling and 118 interlockings use conventional fixed block signaling.

Inventory and status

<table>
<thead>
<tr>
<th>Asset</th>
<th>Total</th>
<th>Percent in Poor/Marginal Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mainline Signals</td>
<td>763</td>
<td>74%</td>
</tr>
<tr>
<td>Mainline Interlockings</td>
<td>183</td>
<td>22%</td>
</tr>
<tr>
<td>Yard Signals</td>
<td>23</td>
<td>14%</td>
</tr>
<tr>
<td>Yard Interlockings</td>
<td>20</td>
<td>12%</td>
</tr>
<tr>
<td>SIR - Signals</td>
<td>31</td>
<td>10%</td>
</tr>
<tr>
<td>SIR - Interlockings</td>
<td>14</td>
<td>7%</td>
</tr>
</tbody>
</table>

![Fixed-Block Signaling](image1)

![CBTC Moving Block Signaling](image2)

Modernized signaling status

- Modernization complete: 52 signal miles
- In-Construction or to be Awarded by 2024: 162 signal miles
- Conventional Fixed Block: 529 signal miles
Traction power

Our traction power system delivers electric power to the trains for propulsion. These assets include substations, circuit breaker houses (CBH), power cabling, and third rail. The traction power system for NYCT consumes nearly 2 billion KW-hours of electricity annually. NYCT substations receive power generated by the New York Power Authority as high voltage alternating current (AC) distributed by Con Edison via high tension transmission feeders. The substation’s transformer and rectifier transform this power into 600-volt direct current (DC), which is fed to the third rail where it is accessed by the trains. The traction power system is divided into zones, which are under the Supervisory Control and Data Acquisition (SCADA) remote-control system centered at the Power Control Center (PCC).

Investment needs

Investments in our traction power infrastructure are needed to replace aging assets. Substations are prioritized for investment based on the condition of their major power unit components, the criticality of their location, and the level of redundancy in a power zone. In addition to these basic investments, upgrades to the system are needed to accommodate future load growth, and these upgrades will also enable better demand management. We will explore mechanisms to utilize electricity more efficiently, for example, by making more effective use of the developing technology to capture and utilize regenerative braking energy and managing power load demand.

Over the next 20 years, we need to:

- Upgrade the PCC’s SCADA remote control systems, as well as the facility itself (PCC conditions and investment needs are detailed within the Operational Facilities section below.)
- Renew substations or substation components and address existing backlog of over 300 major components at approximately one-third of our substations.
- In the latter half of the 20-year period replace hundreds more major components at approximately 100 locations as they reach the end of their service life.
- Replace critically poor power cable and rehabilitate circuit breaker equipment or structural components at approximately 260 CBH locations.
- Replace poor condition or obsolete Emergency Alarms and Emergency Telephones.
- Include additional design and specification changes to make power equipment more able to withstand prolonged heat conditions and less vulnerable to coastal flooding and extreme participation, which can be particularly damaging to electrical equipment.

Asset inventory and status

Traction power is service-critical and has a sizeable backlog of equipment rated poor or marginal. In recognition of this, the 2020-2024 Capital Program doubled the level of investment in traction power assets. This allowed us to rehabilitate double the number of substations and CBHs as well as replace and upgrade the majority of the traction power SCADA system.

<table>
<thead>
<tr>
<th>Inventory and status</th>
<th>Asset</th>
<th>Total</th>
<th>Percent in Poor/Marginal Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substation Overall</td>
<td>224</td>
<td>36%</td>
<td></td>
</tr>
<tr>
<td>Transformers</td>
<td>392</td>
<td>15%</td>
<td></td>
</tr>
<tr>
<td>Rectifiers</td>
<td>394</td>
<td>13%</td>
<td></td>
</tr>
<tr>
<td>HT Switchgear</td>
<td>393</td>
<td>25%</td>
<td></td>
</tr>
<tr>
<td>DC Feeder Breakers</td>
<td>1,461</td>
<td>18%</td>
<td></td>
</tr>
<tr>
<td>Structural Elements</td>
<td>224</td>
<td>26%</td>
<td></td>
</tr>
<tr>
<td>Circuit Breaker Houses</td>
<td>317</td>
<td>27%</td>
<td></td>
</tr>
<tr>
<td>Breakers</td>
<td>1,802</td>
<td>30%</td>
<td></td>
</tr>
<tr>
<td>SCADA System Control Zones</td>
<td>93</td>
<td>34%</td>
<td></td>
</tr>
<tr>
<td>Emergency Alarm/Emergency Telephone</td>
<td>2,627</td>
<td>26%</td>
<td></td>
</tr>
<tr>
<td>SIR - Substations</td>
<td>9</td>
<td>11%</td>
<td></td>
</tr>
<tr>
<td>SIR - Substation Components</td>
<td>119</td>
<td>45%</td>
<td></td>
</tr>
<tr>
<td>SIR - Circuit Breaker Houses</td>
<td>4</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>SIR - Circuit Breaker House Breakers</td>
<td>13</td>
<td>100%</td>
<td></td>
</tr>
</tbody>
</table>
Line equipment refers to a diverse set of assets that protect our tunnel infrastructure, primarily including tunnel lighting; fan plants to ventilate and mitigate smoke events; and pump rooms, deep wells, and drain lines that remove water from the subway into the New York City sewer system on a daily basis and are particularly critical for quick recovery following an extreme weather event.

Asset inventory and status

The condition of our line equipment assets is assessed through inspection. Ratings are primarily based upon physical condition and, in some cases, functional sufficiency such as pumping capacity or lighting type. Assets that do not meet current functional requirements set forth by the agency are prioritized for investment in order to achieve appropriate levels of efficiency or effectiveness that ensure agency goals for service reliability and safety are met.

<table>
<thead>
<tr>
<th>Asset</th>
<th>Total</th>
<th>Percent in Poor/Marginal Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deep Wells</td>
<td>23</td>
<td>0%</td>
</tr>
<tr>
<td>Fan Plants</td>
<td>209</td>
<td>29%</td>
</tr>
<tr>
<td>Pump Rooms (ROW)</td>
<td>254</td>
<td>11%</td>
</tr>
<tr>
<td>Tunnel Lighting</td>
<td>440 Miles</td>
<td>4%</td>
</tr>
</tbody>
</table>

Investment needs

Over the next 20 years, we need to:

- Address components at 28 priority pump rooms, as well as improved sump pump capacity, and increased water detention capacity to temporarily hold large volumes of stormwater at hot-spot stations that are vulnerable to flooding from extreme precipitation and/or are in areas where nearby sewer capacity is limited.
- Address components at 39 priority fan plant locations to eliminate backlog of poorly rated components and enter a normal replacement cycle in the latter half of the 20-year timeframe. Fan plants in locations vulnerable to inland risks were mitigated already at the SLOSH Cat2 + 3 via the Sandy program. Flooding will be prioritized for flood risk mitigations, such as elevating equipment. New fan plant facilities will be constructed as needed and priorities dictate.
- Perform periodic backflushing and equipment renewals at deep wells to maintain needed performance and monitor impacts of changing ground water levels.
- Eliminate tunnel lighting backlogs and invest on a normal replacement cycle. Enhance tunnel lighting by replacing older lighting types with more energy efficient lighting, like LED.
Communication infrastructure and systems

We have an extensive portfolio of communication infrastructure to facilitate many aspects of our daily operation. Though not as visible as other assets, communication networks span our entire system and enable our customer communications, system operations, fare collection, safety, security, and business operations.

Our communication backbone consists of systemwide fiber optic, antenna, and copper cabling, as well as networking equipment, which handle a vast array of voice and data communications between control center head-ends, operators in the field, and equipment like cameras, fare arrays, and radio devices throughout the system.

Our secondary telecommunication networks include passenger station local area networks (PSLAN) connected to fiber optic cable, private branch exchanges (PBX), Connection Oriented Ethernet (COE), and communication rooms, which are located in our subway stations.

A variety of communication applications and systems utilize components of the infrastructure listed above. Station public address and customer information screens, as well as Help Points, depend on PSLAN. SCADA systems are used for remote control and monitoring of power equipment; fan plants and pump rooms use the fiber and copper networks. The newer safety and security systems in stations and tunnels depend on fiber optics, PSLAN, and COE. Additionally, our radio systems for in-service operations and emergency response utilize antenna cable and radio base station infrastructure.

Asset inventory and status

Communication technology becomes obsolete faster than other assets due to rapid technological advancement. Whereas other assets have a typical lifespan of 25 to 50 years, communication assets tend to have a shorter lifespan of 10-15 years. Each technology also has different challenges, dependencies, and vulnerabilities, as well as compatibility requirements. For example, there have been instances of rapid decline in the fiber cable condition in outdoor, elevated locations, as well as transitional locations where the cable routes from outdoor elevated structures to indoor below ground subways.

We have been making advances in rehabilitating and upgrading communication assets. Our 2020-2024 Capital Program included a 97% increase in funding for communication infrastructure over the previous capital program. When 2020-2024 capital projects are complete, we will have reached several key milestones, including having rolled out connection oriented ethernet (COE) across the system, upgraded 60% of network ring equipment and replaced 20% of our legacy fiber cable. Even with these investments, most of our fiber cable was installed between 1988 and 1990, and fiber optic network and cable infrastructure will need continued investment and accelerated upgrades to support the latest standards for data communication, increased bandwidth needs, and to address obsolescence of old equipment.

Inventory and status: Backbone communication infrastructure

<table>
<thead>
<tr>
<th>Asset</th>
<th>Total</th>
<th>Percent in Poor/Marginal Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiber Cable</td>
<td>896 Miles</td>
<td>82%</td>
</tr>
<tr>
<td>Fiber Nodes (support transmission equipment)</td>
<td>85</td>
<td>37%</td>
</tr>
<tr>
<td>Fiber Rings (supporting critical functions composed of interconnected nodes)</td>
<td>7</td>
<td>43%</td>
</tr>
<tr>
<td>Antenna Cable</td>
<td>200 Miles</td>
<td>21%</td>
</tr>
<tr>
<td>Copper Cable</td>
<td>561 Miles</td>
<td>69%</td>
</tr>
<tr>
<td>UHF/VHF Radio Equipment</td>
<td>464</td>
<td>69%</td>
</tr>
<tr>
<td>SIR - Fiber Optic Cable</td>
<td>145 Miles</td>
<td>11%</td>
</tr>
</tbody>
</table>

Inventory and status: Secondary communication infrastructure

<table>
<thead>
<tr>
<th>Asset</th>
<th>Total</th>
<th>Percent in Poor/Marginal Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication Rooms</td>
<td>478</td>
<td>27%</td>
</tr>
<tr>
<td>Passenger Station Local Area Network (PSLAN)</td>
<td>472</td>
<td>46%</td>
</tr>
<tr>
<td>Connection Oriented Ethernet (COE)</td>
<td>1 System</td>
<td>0%</td>
</tr>
<tr>
<td>Private Branch Exchanges</td>
<td>8</td>
<td>0%</td>
</tr>
</tbody>
</table>
Further investment in our communication infrastructure assets will greatly improve the reliability and capacity of our communication system. It will also improve reliability and functionality of assets that depend on that infrastructure.

- The antenna cable throughout the subway system is essential to the transmission of radio signal for the VHF system used by service delivery, and the UHF radio system used by the police, FDNY, and EMS. Between deteriorating antenna cable and poor condition radio equipment, there is a critical need for a sustained replacement program over the next 20 years.
 - An additional goal is to increase antenna cable capacity to support various radio frequencies and radio technologies and expand system frequency and modulation capabilities to support VHF, UHF, 700MHz, and 800MHz. We need to increase the ability of the antenna infrastructure to carry not only additional analog systems, but also narrowband digital technologies.
- Copper supports analog phone service, the 6-wire, emergency alarms/emergency telephones (mentioned in the power section), and other communications.
 - Over the 20-year timeframe, we should continue the accelerated replacement of radio antenna cable and copper cable.
- Communication rooms. Each passenger station has a communication room that provides secure enclosure and connection points for communication assets. These rooms house fiber distribution panels, radio infrastructure, telephone terminals, PSLAN access nodes, COE, and other systems.
 - Communication room temperatures should not exceed 108°F, but often do. Equipment inside communication rooms cannot function when exposed to this level of extreme heat for a prolonged time without sustaining damage.
 - PSLAN interconnects many devices together within a network at passenger stations, allowing for connectivity between various communications assets.
 - Currently, about half of the stations have full networks with nodes sufficient for 21st Century technology. Partial PSLAN coverage results in suboptimal information delivery to and within stations.
- PBXs are major switching centers for tens of thousands of phone, copper cable, and fiber optic cable lines. PBXs allow the managing of data and voice traffic of the system’s phones, communication rooms, and emergency telephones along the right-of-way.
 - PBXs have been updated and currently are in good condition from a recent capital investment, but keeping them in good condition will require regular investment in the next 15-20 years, as well as normal replacement of PBX components.

Investment needs

With investments in communication assets over the next 20 years, we will enhance operations, improve incident response, manage obsolescence, and improve customer communication. Across these categories, investment in both new technology and in measures to protect existing assets will provide increased resilience during extreme weather events, including periods of extreme heat.

Over the next 20 years, we need to:

- Increase the pace of fiber optic cable replacement by replacing at least 20% of fiber optic cable in every five-year program, leading to full replacement by 2044.
- Continue regular investment and normal replacement of rings and equipment.
- Continue the accelerated replacement of radio antenna cable and copper cable.
- Invest in communication rooms’ data cabinets, cooling, and ventilation systems.
 - To address heat and capacity issues in communication rooms, our plans include investments in communication rooms’ data cabinet and ventilation systems, including split cooling systems.
- Equip all stations with a PSLAN capable of delivering reliable information to the public address and customer information screen system.
- Boost bandwidth to increase reliability for the security command center, CCTV, and access control.

Work trains and service vehicles

NYCT maintains a fleet of 643 specialized railcars for work trains, along with hundreds of heavy-duty rubber-tire vehicles such as trucks and vans. Additionally, 37 work cars support the operations of SIR. As we look to push the pace on addressing a variety of maintenance and capital projects, it is vital that these support fleets are both large enough and reliable enough to get the job done. From locomotives and flat cars to refuse collection cars and vacuum trains, the diverse work train fleet supports capital construction and routine operational functions. When prioritizing service vehicle replacement, we look at a combination of asset age and condition.
A sample of work train types includes those listed below:

- **Ballast regulator:** Used to shape and distribute the gravel track ballast that supports the ties in the rail track.
- **Crane cars:** 1-ton, 3-ton and 10-ton cranes to lift and move materials like track panels.
- **Flat car:** MOW vehicle typically used for material handling or refuse management. It requires a locomotive for propulsion.
- **Hopper car:** Work used for material handling of track ballast.
- **Hose and reach:** Work vehicle that includes pumps and metal pipes used to extend the reach of the work train.
- **Locomotive:** Type of railway locomotive in which the prime mover is a diesel engine. An important goal is to transition to lower emission propulsion technologies for work locomotives.
- **Pump car:** A work vehicle that includes one or more pumps used for pumping liquids. Once the liquid is pumped, it will be channeled through “reach” vehicles for discharge.
- **Refuse flat:** A MOW vehicle used for refuse collection. It requires a locomotive for propulsion.
- **Rider car:** A MOW vehicle solely used to transport workers.
- **Snow thrower:** A machine that uses a two-stage impeller and side-mounted rotating brushes to churn up and throw snow up to 200 feet. These vehicles can remove 3,000 tons of snow per hour.
- **Tamper:** A MOW vehicle used to pack the track ballast under railway tracks.
- **Track geometry car (TGC):** An automated track inspection vehicle to test several geometric parameters of the track without obstructing normal railroad operations. The TGC is used to inspect tracks on a regular basis and produce reports of defects found during the inspection.
- **Vacuum train:** A vehicle that removes debris and eliminates steel dust from the right-of-way.

Investment needs

Highlights of these investments are the purchase of rail bound work vehicles such as flat cars, hopper cars, and locomotives for use in general maintenance and construction functions in the system. Among these, the retrofit and replacement of older model diesel locomotives with new engines meeting the latest EPA emissions standards, as well as hybrid locomotives that will employ battery technology in tunnels, will result in significant improvements to air quality for employees and customers, and reduce overall operational greenhouse gas emissions. We will also procure several specialized function vehicles such as vacuum trains, snow throwers, and track geometry cars, which facilitate specific maintenance functions along the right-of-way.

Over the next 20 years, we need to:

- Purchase 230 work train cars of various types.
 - Approximately 44% of the work train fleet is beyond the useful service life. Some of these units are now in the process of procurement and others will be replaced to restore the full fleet to good repair.
 - Specifically, we will replace the following types of work train—crane cars, hopper cars, locomotives, and refuse trains. This change is part of our initiative to replace the aging diesel work locomotive fleet with low-emission alternatives, aiming to reduce greenhouse gas emissions and enhance air quality.
 - Invest in equipment to permit work trains consists of all types to operate under CBTC.
- Steady replacement of rubber-tire service vehicles is planned at a rate of approximately 300 per program. The vehicles to be replaced in each five-year period will be selected based on the age, condition, functional needs, and to meet goals for fleet transition to zero-emissions models.
- For all non-revenue vehicle fleets, the MTA is working to transition 100% of its light-duty fleet to zero-emissions by 2035, and 100% of its medium- and heavy-duty fleet to zero-emissions by 2040.

Inventory and status: NYCT work trains

<table>
<thead>
<tr>
<th>Work Train Type</th>
<th>Total</th>
<th>Percent Beyond Useful Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ballast Regulator</td>
<td>4</td>
<td>50%</td>
</tr>
<tr>
<td>Crane Car-1 Ton</td>
<td>17</td>
<td>29%</td>
</tr>
<tr>
<td>Crane Car-10 Ton</td>
<td>9</td>
<td>0%</td>
</tr>
<tr>
<td>Crane Car-3 Ton</td>
<td>12</td>
<td>0%</td>
</tr>
<tr>
<td>CWR Car</td>
<td>32</td>
<td>50%</td>
</tr>
<tr>
<td>De-Icer Car</td>
<td>8</td>
<td>100%</td>
</tr>
<tr>
<td>Flat Car</td>
<td>243</td>
<td>31%</td>
</tr>
<tr>
<td>Hopper Car</td>
<td>28</td>
<td>100%</td>
</tr>
<tr>
<td>Hose and Reach Car</td>
<td>9</td>
<td>100%</td>
</tr>
<tr>
<td>Locomotive, Diesel</td>
<td>100</td>
<td>17%</td>
</tr>
<tr>
<td>Pump Car</td>
<td>9</td>
<td>100%</td>
</tr>
<tr>
<td>Pump Flat Car</td>
<td>2</td>
<td>0%</td>
</tr>
<tr>
<td>Rail Adhesion</td>
<td>3</td>
<td>100%</td>
</tr>
<tr>
<td>Total</td>
<td>643</td>
<td>44%</td>
</tr>
</tbody>
</table>
Employee and operational support facilities

Employee, operations support, and training facilities house critical operations and support elements of the NYCT subway system. Train crew and other employee rooms are located throughout the system. We supervise and manage train service and the power system from our central facility buildings. Training facilities are where we train our staff, and as technologies in the field modernize, we need our training facilities to follow suit. Importantly, as technologies in the field modernize, we need training facilities to follow suit.

Asset inventory and status

There are over 3,000 employee facility rooms within the subway system, making up about 800,000 square feet of crew rooms, offices, bathrooms, breakrooms, workshops, and locker rooms, all of which support the daily tasks of the train crews, maintenance workers, station employees, and others working across the system. Currently, there is a comprehensive survey underway to assess and identify the subway facility rooms across the system that are in marginal or poor condition and will require investment in the next 20 years. The results of this assessment will help determine investment priorities in the next capital program.

In addition, we have numerous stand-alone operational facilities. Several of these facilities were constructed for activities different than their current uses and have required continual retrofitting and upgrading to accommodate these changes.

Principal operational facilities include:

- **The Operations Control Center consists of the RCC and in an adjacent building the PCC.** Together, these are the nerve-centers for service delivery, power system operations, and other operations divisions, which together operate and manage subway service.
 - The RCC is a five-story control center completed in 1997. An around-the-clock team monitors train movement and power distribution throughout the entire system. RCC is responsible for overseeing normal train service, directing responses to subway incidents, managing service diversions, monitoring field conditions, and directing emergency or inclement weather responses. Train service is monitored using radio communication, computer-based train tracking and control systems, and CCTV, with the associated technology equipment housed in the control center’s data centers and communication rooms.
 - The PCC is an antiquated facility with systems and building components that are almost 50 years old. The three-story PCC structure was completed in 1974 and houses the power system operations, which manages substations, circuit breaker houses, and emergency ventilation plants. The PCC has major space constraints, and its configuration does not meet modern operations control center standards.

- **130 Livingston Street** is a 13-story building constructed in 1991 that houses numerous subway departments, including operating and engineering divisions, training facilities, information technology centers, security, emergency response, and administrative support offices. The building operates on a 24-hour, seven-day weekly schedule.

- **Signal Learning Center** comprises roughly 28,000 square feet within a subway station, with 13 classrooms utilized for a variety of in-house educational purposes. Importantly, as technologies in the field modernize, we need training facilities to follow suit, such as the development of a CBTC training facility.

- **PS 248 TA School** is in a former NYC public school building in Brooklyn, NY. Built in 1932, the four-story building currently serves as a NYCT training facility. Training activities include track, RTO, stations, car equipment, induction, infrastructure, and conductors.
Investment needs

Over the next 20 years, the operations control center (RCC and PCC) will exceed its original useful life and will need to have overall space and technology issues in its current location evaluated and addressed. Additionally, upgrades to various existing facility components, such as building envelope, HVAC, space layouts, and electrical generators will be required.

Over the next 20 years, we need to

- Address the PCC’s immediate needs, by improving space configuration, replacing the roof, upgrading HVAC systems, completing replacement of obsolete power control systems, and pursuing longer-term improvements to make the PCC more functional and sustainable.
- Upgrade the RCC’s systems and building components to keep pace with the increased technical requirements of service delivery that have advanced since the RCC’s commissioning in 1997, including roll-out of CBTC and other field-management system. Additionally, the RCC’s building systems and components require periodic upgrades, including to the building envelope, HVAC, space configuration, and generators.
- Invest in subway facility rooms, as most are in poor condition. Prioritized locations will need to be upgraded and modernized to fit their purposes, including providing appropriate breakroom and bathroom facilities to support employees as they perform their crucial work on the transit system. Priorities will reflect the results of ongoing surveys and are expected to prioritize facility HVAC, breakrooms, bathrooms, and other crew facilities.
Overview of agency and assets

The largest and busiest commuter railroad in the nation, the Long Island Rail Road (LIRR) comprises 126 passenger stations, more than 700 miles of electrified and non-electrified track, and 11 branches stretching from Montauk on the eastern tip of Long Island to Penn Station and Grand Central Madison in Manhattan, nearly 120 miles away. On weekdays, the LIRR provides up to 250,000 trips per day, which represents almost 75% of its ridership prior to the COVID-19 pandemic.

The LIRR has a rich history dating back to 1834, making it the oldest continuously operating commuter railroad in North America. Some of our infrastructure has even been around since those early days, like the Atlantic Avenue Tunnel, portions of which were built in 1905. Given our age, we have significant work to do to rebuild and rehabilitate aging assets so we can boost reliability and provide our community with world-class service.

The LIRR by the numbers

- Weekday ridership: Approximately 230,000
- Approximately 1,100 electric multiple unit (EMU) passenger railcars, 134 coaches, 45 passenger locomotives, 33 work locomotives
- Six shops and 32 yards
- 126 passenger stations
- 700 miles of track
- 56 overgrade bridges, 504 undergrade bridges, four tunnels, 29 viaducts
- 578 mainline switches
- 129 power substations
Investment needs highlights

Over the next 20 years, our priority investment needs include:

- **Passenger vehicles and yards**
 - Purchasing new railcars to meet expanding service needs and replace aging cars to improve reliability, accessibility, and passenger experience.
 - Advancing MTA sustainability goals by replacing locomotives with new dual-mode locomotives.

- **Passenger stations**
 - Achieving full ADA accessibility for 100% of our stations.
 - Rehabilitating or replacing deteriorating station components such as platforms, canopies, and station buildings throughout the system.

- **Right-of-way**
 - Fixing the Atlantic Avenue Tunnel through structural rehabilitation, waterproofing and enhanced lighting, fire safety, and security systems.
 - Replacing or rehabilitating 60-100 bridges and 11-23 viaducts to bring our all bridges and viaducts into good condition.
 - Improving service reliability by completing the reconfiguration of track at Jamaica to alleviate bottlenecks, reduce delays, and help trains move faster.

- **Signals, Power and Communications**
 - Renovating or replacing substations to ensure reliable traction power throughout electrified territory.
 - Improving customer communications, ensuring reliability, and increasing safety and security by installing new digital signage and upgrading the control systems that serve stations.
 - Modernizing approximately 50 miles of signal systems and replacing aging and/or obsolete components with latest-generation electronics providing modern and more reliable signal systems.
Our asset rating methodology

We perform regular and comprehensive inspections of all of our assets. Through these inspections, all assets are given a condition rating on a scale of 1 to 5, based on various factors, including age, condition assessment, performance, reliability, safety history, and location. Assets with a rating of 1 (poor) or 2 (marginal) help us identify where we need to focus investment needs the most. This rating scale is consistent with the Federal Transit Administration’s Transit Economic Requirements Model scale. A brief description of the rating scale is provided below.

1. Poor (Deteriorated): Critically damaged or in need of immediate repair, well past useful life. Assets are operable with extraordinary maintenance, but have serious functional deficiencies and/or can be expected to experience potentially unacceptable stoppages over the next five years, which could have serious negative impacts on service within the existing maintenance framework. Assets require operating-funded interventions, which may include more frequent inspections and/or repairs that may include removing the asset from service until repairs can be performed. Capital investment in these assets is needed on a priority basis.

2. Marginal (Deficient): Deteriorated, in need of replacement, and may have exceeded useful life. Assets have functional deficiencies and/or can be expected to experience above-normal stoppages over the next five years, but severity of customer impacts or changes to operational practices can be held within acceptable bounds for a time within the existing maintenance framework. If capital investment is/was deferred for these assets, added maintenance and operating expenses would be expected.

3. Adequate (Acceptable): Moderately deteriorated, but has not exceeded its useful life. Assets that are not necessarily meeting all current technical and functional standards, but are considered adequate for service and can be expected to experience normal stoppages that can be fully accommodated within the existing maintenance framework. These assets may require cyclical replacement in the next five years.

4. Good: No longer new, but in good condition and still within its useful life. Assets may be slightly deteriorated, but are overall functional within the normal maintenance practices.

5. Excellent (Modernized): No visible defects, new or near new condition and may still be under warranty (if applicable). Considered to meet most or all important technical and functional standards.

It is important to note that an asset condition rating is not an indicator of safety. Safety and risk assessments are performed separately from asset condition ratings and are addressed on an ongoing basis.

Long Island Rail Road appendix structure

The LIRR appendix provides an overview of the agency’s assets, their current condition, and expected investment actions to maintain and improve them over the next 20 years. The appendix is divided into asset groupings, based on how our asset categories function together. For example, our passenger vehicles are supported by our shops, yards, and facilities, so together they form an asset grouping. We provide a summary of each asset grouping, describe how the asset categories support each other, and then provide a 20-year vision for their maintenance and enhancement. Each asset category section then provides a more detailed description of the asset, an inventory showing asset ages or the percentage of assets in poor or marginal condition, followed by the agency’s investment needs and priorities for the next 20 years.
The LIRR operates passenger service with a fleet of roughly 1,300 railcars. When these trains are not running in passenger service, they are either staged at one of our 22 passenger fleet rail yards or they are at one of our six shops, where they are cleaned, inspected, or undergoing maintenance.

To ensure passenger safety, federal regulations and LIRR procedures require testing and inspections of railcar and locomotive components and systems such as braking and power systems, lights, wires, cables, doors, air conditioning, radios, and more, each day they are in service. These basic inspections take place at our yards before trains are put into service. Railcars also undergo regular interior and exterior cleaning and more comprehensive inspections and scheduled maintenance at recurring intervals at our shops to ensure reliability. In the rare event of a mechanical failure, unscheduled maintenance for all railcars is also performed at these shops. In addition to our 22 yards and six shops dedicated to passenger railcars, we have five yards and one shop dedicated to the maintenance, storage, and inspection of work trains, including materials and support equipment we use to make repairs to our tracks, bridges, and other railroad infrastructure.

To deliver high quality, safe, comfortable, and reliable train service to our passengers, it is necessary that we have a modern and well-maintained fleet, as well as yards and shops with adequate capacity and that are in a condition that allows us to work safely and efficiently. Toward that end, we must continue to invest in new railcars, and we must invest in our yards and shops so that we can maintain our fleet effectively and meet our service guidelines.

Our investment needs over the next 20 years include:

- Purchasing new electric railcars to meet expanding service needs and replacing aging cars to improve reliability, accessibility, and passenger experience.
 - The expanded fleet is needed to support increases in train service made possible by the opening of Grand Central Madison and Main Line Third Track.
 - Upgrading our coach fleet through the replacement of the aging C3 Bilevel as they reach the end of their service life later in the 20 year timeframe.
 - Replacing of all locomotives, which are nearing the end of their 30-year “useful life,” with new Tier IV dual-mode units that will use more electric power and less diesel than current locomotives.
 - Rehabilitating or replacing existing components in various LIRR maintenance shops and yards, and renovation or expansion of electric fleet maintenance facilities to ensure that facilities are safe and adequate for future operational needs.
 - Renovating, expanding, and adding shops and yards to care for the technologically evolving and expanding fleet.
 - Ensuring these facilities are climate-resilient—to address risks like increased flooding and heat—and sustainable to advance MTA’s goal to reduce greenhouse gas emissions 85% by 2040.
Passenger vehicles and yards

The majority of the time that our customers spend with us is on board our passenger vehicles, and thus the condition and performance of our passenger vehicles is a major determinant of overall customer experience and satisfaction, as well as a major factor in our ability to deliver safe and reliable service. Our passenger vehicle fleet is comprised of four distinct types of railcars: two that carry passengers and two types of locomotives.

Passenger vehicles

EMU
Short for electric multiple unit, this is our most common type of passenger railcar. Electricity from a third rail powers these self-propelled Carriages which are grouped into “married pairs” (permanently linked pairs of cars) that share equipment, currently including M9, M7, and M3 railcars; they do not require a locomotive.

Double Deck Coach
A push-pull railcar that carries passengers on two levels; one or more coaches make up a train propelled by a locomotive.

DE-30 Locomotive
A diesel-powered vehicle that pulls and pushes double decker coaches; the locomotive’s motor is powered by a diesel engine that can operate in electrified track territory, but still runs on diesel. These trains cannot run in the East River Tunnels between Queens and Manhattan.

DM-30 Locomotive
A dual-mode (DM) powered vehicle that pulls and pushes double decker coaches; has a motor that can be powered by a diesel engine or third rail electricity, allowing these trains to operate in the East River Tunnels between Queens and Manhattan.

For the railcars that carry passengers, we have a need to replace them as they reach the end of their useful life. For our locomotives, upgraded dual-mode engine technology will maximize the use of electric, third rail power instead of diesel whenever possible. This will reduce our use of fossil fuels and decrease our greenhouse gas emissions.

Asset inventory and status

We use two primary indicators to assess the condition and performance of our railcars, which together guide decisions on when further investment or replacement is warranted.

- **Useful life**: Older railcars are more prone to break down, generally require more extensive and costly maintenance to keep in service, and are less comfortable for our passengers due to worn interiors. Any railcar over the age of 40 is considered past its useful life, though for some models this number may be as low as 25 years or as high as 40 years. Railcars built prior to the enactment of the federal Americans with Disabilities Act (ADA) do not meet current standards for accessibility. We plan to replace railcars before they reach the end of their useful life.

- **Mean Distance Between Failures (MDBF)**: This is a measure of reliability that expresses the railcar’s mean (average) operating distance mileage traveled between all relevant train delay failures. The MDBF measure is used to inform decisions about how and when to perform maintenance. Our maintenance plans and our program for continued replacement of old cars have resulted in great fleet reliability successes. In 2022, the MDBF for the entire fleet was 229,824 miles, a vast improvement over the 50,000-mile MDBF from 2005.

Rail Fleet - Long Island Rail Road

- EMUs 40 Year Useful Life
- Locomotives 25 Year Useful Life
- Coaches 40 Year Useful Life

Data for cars in service as of first car delivered.
Investment needs

Over the next 20 years, we will focus our upcoming fleet investments to achieve two objectives:

1. Keep up with the normal replacement of the passenger railcar fleet and expand the fleet to support increases in train service made possible by the opening of Grand Central Madison and Main Line Third Track.
 - Complete the fleet expansion to support service increases made possible by opening of Grand Central Madison and Main Line Third Track.
 - M3s have been in service since the 1980s and are past their useful life.
 - New cars would be a significant improvement over the M3s in multiple ways: they will be equipped with amenities to improve customer experience and safety including better accessibility, wider seats, electrical outlets, and multimedia screens.
 - The M7 fleet (67% of the total fleet) will reach the end of its useful life at the end of the 20-year period. We must prepare for the replacement of the M7 railcars or risk less reliable service and increased operating cost.
 - The C3 BiLevel reach the end of their service life later in the 20 year timeframe and will need to be replaced.

2. Transition to a locomotive fleet comprised fully of DM locomotives, and cease operating any diesel-only locomotive.
 - We plan to replace all locomotives that are or will be beyond their useful life with locomotives that have the newest DM engine technology, which enables traction power motors to be powered from both diesel and third rail. In addition to improved reliability, replacing aging diesel locomotives with DM technology is key to the MTA's climate commitment.
 - New DM locomotives maximize use of third rail electricity and minimize use of diesel, thus reducing both greenhouse gas emissions and local air quality pollutants.
 - The new Tier IV final engines (or latest EPA standard) reduce emissions of local air quality pollutants like particulate matter and nitrous oxides by over 97% and 86%, respectively.

Shops, yards, and facilities

The primary purpose of rail yards is for railcar staging or inspections, while our shops fall into two distinct categories based on function:

- Maintenance of Equipment (MOE) shops and yards are where our employees perform comprehensive inspections, cleaning, repairs, component changeouts, retrofits, and overhauls of the passenger railcars.

- Maintenance of Way (MOW) shops and yards are where we store or maintain equipment and materials needed for maintenance of track and other right-of-way infrastructure.

For the purposes of this assessment, we are also treating MOW assets such as work trains as a subset of MOW shops. In addition to shops and yards, we have several other employee facilities that support various operational or maintenance functions. We assess the condition of the various building systems and components that make up these facilities.

Asset inventory and status

Condition assessments of the employee facilities and shops (except rolling stock support equipment) within this category are performed every five years. During inspection, a rating is assigned to all components, such as building exteriors, building interiors, electrical systems, plumbing, HVAC, etc. We can then understand condition trends, set priorities, and begin to identify the required capital investments—as well as maintenance activities—by either component type or facility location.

Rolling stock support equipment includes all the machinery within a shop that is used to maintain our railcars and locomotives. Most of our rolling stock support equipment is located within the Hillside Maintenance Facility and has not been replaced since the facility opened in the late 1980s.

In addition to measuring the age and condition of our shops and yards, we also measure these assets by their performance. Asset performance considers the ability of the shops and yards to support the fleet and meet maintenance needs. Facilities that are unable to meet these fleet and maintenance needs will be upgraded and reconfigured, or in some cases replaced, with replacement targeted toward poor performing components that are likely to impact fleet reliability or operations.
Investment needs

In order to provide optimal support for our train fleet, we require shops and yards that are modern, safe, and have adequate capacity and equipment to meet our evolving fleet maintenance needs. Equipment should be in a condition that allows for work to be carried out safely and efficiently, and our facilities must be safe and adequate for staff needs. We must also make investments to mitigate the effects of climate change on our assets.

We will prioritize investments in our assets based on asset condition and asset performance.

Over the next 20 years, we need to:

- Replace poor condition, marginal condition, or over-age components throughout storage yards, heavy equipment within maintenance shops, and components of buildings and building systems for each of these asset categories.
- Upgrade and reconfigure support shops and facilities to meet evolving maintenance needs in conjunction with the procurement of new railcars, such as new work locomotives and new fleet expansion of the M9 and M9-A.
- Ensure that maintenance facilities are properly equipped to store, inspect, maintain, and clean rolling stock by replacing outdated and underperforming equipment in Hillside and other shops. Ensure maintenance facilities meet the needs of our future fleets:
 - Explore the benefits of renovating and expanding maintenance facilities in the next 20 years to better support our fleet. For example, Hillside Maintenance Complex is currently the only location equipped to fully maintain the electric train fleet, creating operational inefficiencies and adding to operating cost.
 - Rebuild the Morris Park locomotive turntable and refurbish train wash facilities.
 - Make operational improvements to Arch Street Shop and Yard Facility to better support network needs following the opening of Grand Central Madison, including establishing an engineering headquarters and employee facility in Long Island City.
- Replace work locomotives that are in poor condition.
- Fortify shops, yards, and facilities likely to be affected by climate change impacts.
 - Arch Street Shop and the West Side Shop are in coastal flood zones and face an increased risk of flooding.
 - Sheridan Car Shop, Morris Park Shop, and the Hillside Maintenance Complex are at risk of stormwater flooding from extreme rainfall. Where relevant and necessary, facilities will be hardened to enhance drainage systems, install backflow valves, implement pumping mechanisms, floodproof or elevate assets, install perimeter protection, add heat monitoring equipment to assets, and ensure access to back-up power.
- Use asset replacement opportunities to conserve energy, reduce fossil fuel use, and generate renewable energy on-site. By integrating these practices into normal investment cycles, we will maximize the long-term operational cost savings that are generated through updated building systems that reduce fossil fuel dependence and reduce demand for grid electricity.
- Install electric vehicle charging equipment dedicated for LIRR use in appropriate locations to meet MTA goals of transitioning to 100% zero-emissions light-duty non-revenue vehicles by 2035 and medium/heavy-duty non-revenue vehicles by 2040.
Our 126 passenger stations are a rider’s first and last point of contact with the LIRR system. Each station is unique, and there is a wide range in the level of complexity of stations across the network, from simple at-grade platforms to the massive underground complex of Penn Station.

Passenger stations contain numerous interrelated systems and individual elements, all of which must be maintained so that customers can safely access trains. Stations contain several types of structures including buildings with waiting rooms, restrooms, and agents, as well as platforms with shelters, stairs, ramps, overpasses, public address systems, and digital display signage. Station assets also include elevators, escalators, walkways from local streets to the platform, parking lots, security cameras, and numerous other amenities to make it more safe, convenient, and comfortable to wait for or access trains. Communication systems inform riders of train arrivals, departures, and delays; make safety announcements; and provide other information to help passengers complete their journey. Beneath it all are the structural elements of the station, which must be kept in safe condition for millions of annual riders.

Our investment needs over the next 20 years include:

- Replacing platforms or platform components that are not in good condition.
 - Replace all platform components with structural deficiencies identified in annual inspections.
- Rebuilding and rehabilitating station buildings.
 - Repairing and replacing station building components including doors, windows, HVAC, restrooms, roofs, fire safety systems, and more at approximately four stations per five-year program.
- Keeping our new facilities at Grand Central Madison in good condition and continuing to improve facilities that LIRR customers rely on in Penn Station.
- Investing in communication systems to improve real-time train information and providing improved audio and visual communications in stations.
- Improving systemwide station accessibility.
 - Making 100% of our stations accessible by completing ADA projects at seven stations.
 - Adding new elevators at 13 stations and replace 17 elevators to keep them within their useful life.
Passenger stations

Inventory and status

<table>
<thead>
<tr>
<th>Asset</th>
<th>Total</th>
<th>Percent in Poor/Marginal Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platform Components</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADA Ramp</td>
<td>152</td>
<td>7%</td>
</tr>
<tr>
<td>Platform Substructure</td>
<td>206</td>
<td>19%</td>
</tr>
<tr>
<td>Platform Slabs</td>
<td>206</td>
<td>19%</td>
</tr>
<tr>
<td>Platform Joints</td>
<td>206</td>
<td>15%</td>
</tr>
<tr>
<td>Platform Railing</td>
<td>157</td>
<td>9%</td>
</tr>
<tr>
<td>Platform Waiting Room</td>
<td>29</td>
<td>0%</td>
</tr>
<tr>
<td>Canopy</td>
<td>100</td>
<td>24%</td>
</tr>
<tr>
<td>Shelter</td>
<td>182</td>
<td>6%</td>
</tr>
<tr>
<td>Stairs</td>
<td>751</td>
<td>6%</td>
</tr>
<tr>
<td>Elevators & Escalators</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elevators</td>
<td>50</td>
<td>32%</td>
</tr>
<tr>
<td>Escalators</td>
<td>19</td>
<td>63%</td>
</tr>
<tr>
<td>Station Building Components</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station Building Exterior</td>
<td>88</td>
<td>3%</td>
</tr>
<tr>
<td>Station Building Interior*</td>
<td>88</td>
<td>1%</td>
</tr>
<tr>
<td>Paving</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Walkways/Sidewalks</td>
<td>260</td>
<td>9%</td>
</tr>
<tr>
<td>Parking</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parking (surface lot)</td>
<td>151</td>
<td>20%</td>
</tr>
<tr>
<td>Parking Structure</td>
<td>1</td>
<td>0%</td>
</tr>
<tr>
<td>Parking (garage)</td>
<td>3</td>
<td>0%</td>
</tr>
</tbody>
</table>

*Station Building Interior includes doors, windows, floor, walls, restrooms, security systems, HVAC systems, and fire suppression systems.

Asset inventory and status

Condition assessments of station assets are performed annually. During inspection, a rating is assigned to all components of the station such as building exteriors, building interiors, escalators, platforms, and lighting. Based on these component ratings, an overall rating is assigned to each station. We can then understand condition trends, set priorities, and begin to identify the required capital investments (as well as maintenance activities) to preserve and maintain the integrity of assets and their components.

Examples of age-based and condition assessments for station components are:

- **Useful life:** Older assets are more prone to break down and generally require more extensive and costly maintenance to keep in service. For example, an elevator over the age of 20 is considered past its useful life.
- **Condition:** The amount of deterioration in each component of the station building and platform is assessed by a qualified inspector and assigned a numerical rating.

The results of a condition-based assessment of station assets and components are shown here in a table. (This table excludes Penn Station and Grand Central Madison, which are each assessed separately.)
Passenger station public communications and security

Audio/visual paging systems (AVPS), public address systems, security cameras, intercoms, radios, real-time information digital signs, and countdown clocks improve our riders’ experience by providing important service updates to passengers, enhancing security within our stations, and facilitating fare payments. The backbone of this technology is our extensive fiber optic network, which is discussed separately within the Communication Infrastructure section below. Recent investments in the fiber optic network have made it possible to upgrade to next-generation technology on downstream systems and equipment such as station public address systems and ticket vending machines.

AVPS includes station public address systems and digital displays at branch line stations, as well as audio public address systems at LIRR terminals. AVPS provides schedule-based information in combination with real-time status as it reflects projected arrival and departure times including information about the nature and causes of delay.

Investment needs

For stations other than Penn Station or Grand Central Madison, we will continue to prioritize making all stations accessible and rehabilitating stations that have platforms and station buildings with significant structural deterioration while addressing other poorly rated components.

Over the next 20 years, we need to:

- Replace platforms that are in poor or marginal condition, prioritizing locations that have platform integrity or structural issues.
 - Similar to accessibility projects, where feasible, when performing major platform structure work, we will seek to replace all related assets that are in poor or marginal condition like overpasses, platform lighting, signage, security systems, etc. at the affected stations.
 - Platforms that are being rebuilt or repaired and that are shorter than standard platforms will be evaluated to determine if it is cost effective and operationally beneficial to lengthen to allow for all-car boarding.
 - When platforms are being replaced, we will take advantage of the opportunity to install tactile edging to improve platform safety.

- Rehabilitate station building assets such as building doors, windows, roofing, restrooms, HVAC systems, boilers, sewer systems, lighting, painting, signage, security, fire suppression systems, and CCTV security systems.
 - Improve accessibility by adding ADA-compliant bathrooms and egress.
 - Invest in historic station building restoration.

- When upgrading stations, maximize opportunities to conserve energy and reduce fossil fuel use, and explore the feasibility to deploy solar photovoltaics for on-site renewable energy generation.

- Where possible, incorporate climate resilience strategies alongside necessary repair work, including:
 - Floodproofing or elevating station assets that are already or will soon be vulnerable to flooding due to climate change.
 - Investing in improved drainage such as larger culverts, stormwater retention, pumps, and/or backflow prevention.

- Advance accessibility at East New York in Brooklyn; Kew Gardens, Mets-Willets Point, Douglaston, and Hunterspoint Ave in Queens; Bellerose in Nassau; and Cold Spring Harbor in Suffolk County to achieve 100% of stations being fully accessible.

- Where feasible, as accessibility enhancement projects are planned and executed, other station projects will be bundled with the accessibility projects to increase construction efficiency and time savings. The additional work can include critical infrastructure replacement work, normal component replacements, and climate resilience improvements.

- Replace elevators as they approach the end of their 20-year useful life.

- Remove or upgrade components that are obsolete or have exceeded their service life.

- Where possible, replace older generation technology with current generation technology.

- Where feasible, replace obsolete equipment with new equipment.

- Where feasible, as accessibility enhancement projects are planned and executed, other station projects will be bundled with the accessibility projects to increase construction efficiency and time savings. The additional work can include critical infrastructure replacement work, normal component replacements, and climate resilience improvements.

- Replace elevators as they approach the end of their 20-year useful life.

Several prioritization factors are considered for communication investments and are evaluated in concert with a paced, continuous replacement cycle. Asset age compares the actual age of the communication equipment to its lifespan; when the equipment is close to exceeding its maximum age, it is prioritized for replacement. Asset obsolescence prioritizes installing new technologies; as communication technology changes, obsolete technology becomes more difficult to maintain, and parts are harder and more expensive to acquire. Asset condition defines the physical state of the communication equipment, based on number and frequency of repairs and tickets. Asset criticality includes factors such as a role in maintaining safety, sustaining LIRR operations, and supporting corporate data needs.
Communication and security upgrades are a focus for the LIRR as we strive to incorporate the latest technologies into our integrated public communications and internal train location information systems.

Additionally, one of our biggest obstacles in implementing new communication and security components is the speed at which technologies change. If we wait too long to shift from a functional but older technology system to a new technology system, we risk obsolescent parts, delays in repair schedules, and decreased system compatibility. We will evaluate emerging technologies so we can ensure compatibility with existing systems. We strive to balance immediate needs with long-term scalability and compatibility requirements, which requires careful planning and evaluation.

The results of a condition-based assessment of public communication and security assets and components are shown in the inventory and status table. For electronic assets, such as electronic signs, a rating of poor or marginal does not necessarily indicate that they are not able to perform their intended function. However, they may be functionally obsolete, meaning they are unable to incorporate recent technological improvements, their parts are no longer easily obtained, or maintenance is becoming increasingly challenging or costly. Likewise, for security assets, a rating of poor or marginal does not mean they cannot perform their intended function.

Investment needs

Over the next 20 years, we need to:

- Install new interior and exterior color AVPS signs and implement the station technology upgrade program to replace station signage throughout the LIRR system. Station technology upgrades will enhance the customer experience in numerous locations.
- Repair or replace assets in poor or marginal condition, replace assets that are approaching the end of their useful life, and upgrade obsolete systems to new technologies (in particular older generation AVPS signage, security access control readers, and video recorders).
- Improve customer communication, ensure reliability, and increase safety and security by upgrading the control systems for all station audio/visual communication systems with fully redundant systems that are also integrated with LIRR’s centralized train control system.
- Improve security by replacing or upgrading security cameras at station buildings and platforms.
- Seek to incorporate climate resilience strategies when improvements are made, so these assets have reduced risk of being damaged by extreme heat, flooding, or heavy winds.

Penn Station

As the busiest terminal in our network, it is vitally important that the station meets the needs of our operations and of the LIRR passengers who use the station. While Penn Station is owned by Amtrak, the LIRR has capital responsibility for assets and systems within the portion of the station that we operate. A recent major improvement, our spacious new LIRR Concourse at Penn Station opened in 2022, elevating the experience of nearly half of Penn Station’s users who walk through this concourse daily. Planning continues for Penn Station Reconstruction, which would modernize the passenger experience throughout the entire station. It is also critical that, separate from the improved concourse, other portions of the station that are leased by the LIRR have numerous assets and integral systems that are in poor or marginal condition and need LIRR investments.
Investment needs

We plan to do work to replace or repair assets that are in poor or marginal condition. Over the next 20 years we plan to:

- Replace all the HVAC air handlers.
- Rehabilitate the building electrical and plumbing systems.
- Rehabilitate platforms in poor structural condition and their associated components, such as staircases and lighting.

In addition, many assets that are currently in good condition, such as elevators, escalators, station lighting, flooring, and restrooms, will require cyclical replacement during the 2025-2044 period, as they reach the end of their useful lives.
Grand Central Madison

This new station, which integrates connections to the subway and Metro-North Railroad, has opened new travel options for tens of thousands of daily LIRR riders. Passengers now have direct access and shorter commutes to Manhattan’s East Side, the most transformative change to LIRR service in over a century. In less than two months of being open with full service, the LIRR surpassed one million customers traveling in or out of Grand Central Madison.

Investment needs

Investments over the next 20 years will focus on maintaining the opening day standard of the new Grand Central Madison station. All components of the station are currently relatively new and are in good condition. However, assets with useful lives of less than 20 years will be due for cyclical replacement during the 2025-2044 period. Keeping up with these normal replacement cycles will ensure Grand Central Madison remains in good condition.

Components slated for normal replacement over the next 20 years include HVAC units, signage, elevators, escalators, and platforms. We will also ensure that operational facilities, tools, and equipment needed to continue maintenance of Grand Central Madison facilities are adequate. Additional improvement priorities include new operational equipment for LIRR trains, and portable HVAC units for use within the tunnel, vent plants, and terminal areas.
Right-of-way infrastructure is a grouping of asset categories that make up the physical railroad right-of-way, namely what we call "line structures" and track. Line structure assets include bridges, viaducts, and tunnels. Also included in this asset category are culverts and retaining walls. Culverts are structures that allow water to flow under the right-of-way and must be right-sized to ensure there is adequate drainage capacity. Retaining walls hold soil in place when the railroad is at a different elevation from the adjacent property. Proactive maintenance of line structure assets mitigates the need for extensive repairs or costly rehabilitations in the future. Track includes the rails and ties, as well as switches, grade crossings, and ballasts. These assets, which also support the freight operations that transport goods throughout the region, are subject to heavy use and continuously exposed to harsh and changing weather conditions.

Our investment needs over the next 20 years include:

- Renew the Atlantic Avenue Tunnel through structural rehabilitation, waterproofing, enhanced lighting, fire safety, and security systems.
- Replace or rehabilitate 60-100 bridges and 11-23 viaducts, and apply state-of-the-art protective surface coating and deck waterproofing at up to 100 locations, decreasing future maintenance needs and increasing the lifespan of our structures.
- Improve service reliability by completing the reconfiguration of track at Jamaica to alleviate bottlenecks, reduce delays, and help trains move faster through some of our most congested locations.
- Continue cyclical programs to replace and modernize track components across the network and invest in resilience with new retaining walls and drainage systems.
- Install high security fencing in critical locations to keep the right-of-way secure.
Undergrade bridges
Allow an obstacle to pass under the railroad (i.e., the track(s) are on the bridge structure).

Overgrade bridges
Allow the obstacle to pass over the railroad (i.e., the roadway is on the bridge structure).

Tunnels
Underground passages or channels that provide the means for our rail to traverse underneath bodies of water or highly developed neighborhoods.

Viaducts
Provide separation of the railroad from the surrounding community or allow our rail system to traverse a wide valley with a bridge-like structure.

Retaining walls
Built to hold back soil and provide support for our elevated structures or keep steeply sloped surfaces from collapsing onto the adjacent track bed.

Culverts
Are designed to allow water to flow underneath tracks to manage drainage and prevent flooding.

During these inspections, a qualified inspector carefully examines and documents elements of each structure. The many components related to each structure—like steel girders, beams, and abutments—are comprehensively assessed to identify steel or concrete corrosion, decay of wooden timbers, or other signs of deterioration. The results of condition-based assessments of line structure assets indicate that several bridges are showing increasing levels of structural deterioration that, if not addressed, could result in unsafe conditions. While it hasn’t grown, this percentage has not decreased in recent years. In addition to overall structural condition, undergrade bridge steel painting and deck waterproofing conditions are documented, as these could have significant impact on the structural condition down the road. Most bridges have paint and/or waterproofing that is in poor or marginal condition. Seven viaducts, encompassing 256 individual spans, are in poor or marginal condition. This quantity has grown in recent years due to deferred rehabilitation work. In addition, three of four tunnel segments have never had significant structural rehabilitation investments since they were constructed and are in marginal condition. The results from the 2022 condition assessment are shown in the inventory and status table.

Investment needs
Over the next 20 years, we will address the condition of the structures most critical to safe operation of service including bridges, viaducts, and tunnels, while focusing on preservation methods, such as painting and waterproofing, to maintain the integrity of our existing structures and prevent structural deterioration. Priority rehabilitations or replacements are identified based on poor or marginal conditions, as well as structures with defects requiring immediate attention which could impact operations or that are in critical locations. In many cases, the structural components can be rehabilitated to bring the structure to an acceptable condition overall. However, if this type of investment will not effectively improve the condition to an acceptable level or additional investments will be required a short time later, the structure will likely need to be replaced.

Over the next 20 years, we need to:

- Increase the pace in preventative maintenance on structures through increased deck waterproofing and structural steel painting.
- Bring all bridges into good condition through our structures rehabilitation/replacement program by frontloading approximately three to five high-priority bridges and three to six viaducts in each program based on their physical condition and load capacity rating. Rehabilitate tunnel components in the worst condition in the initial part of the next 20 years and then transition to investments that preserve the structures.
- Redesign or retrofit line structures to better withstand future climate hazards in the coming years. Climate resilience strategies include sizing culverts for anticipated future rainstorms and flows, and stabilizing or fortifying retaining walls in areas where steep slope exposure and extreme precipitation is more likely to result in run-off, erosion, and landslides.
Track

Our track system is made up of several elements:

- **Ties:** These are the cross-members that hold the rails at a fixed width to form the track structure. They’re usually made of wood or concrete. In some places, like the Atlantic Avenue Tunnel, we use half-ties. On certain viaducts we use direct fixation or bridge timbers on open deck bridges and viaducts.

- **Rail:** This is what provides a running surface for the train wheels. Together with the ties, they form the track structure.

- **Ballast:** This is the crushed stone that supports the track structure.

- **Switches:** These are arrangements of ties and rails that allow trains to move from one track to another.

- **Crossings:** These are either concrete or rubber pads installed to allow vehicles to travel over tracks at ground level.
Asset inventory and status

Our track assets are assessed by age, condition of the asset, and based on operating conditions. When prioritizing track assets for replacement or improvement, we consider different factors by component. Track assets are generally replaced on a cyclical basis based on age or remaining lifespan.

- Rail assets are replaced based on the age of the rail and based on use. Rail that is more frequently traveled requires more frequent replacement.
- Ties are replaced based on age, which ranges from 30 years for wood ties to 50 years for concrete.
- Switches are evaluated for replacement based on how much use and wear they receive.
- Crossings are prioritized for replacement based on site and asset conditions. Grade crossing replacements are often coordinated with the local authority responsible for roadway maintenance.

- Yard track and switches require an age-based or conditions-based approach to repair or rehabilitate.
- Track maintenance equipment such as cranes, machines for installing ties and rail, and vehicles used to carry track components are prioritized for replacement based on Federal Railroad Administration requirements.

To ensure all components are meeting our high standards we conduct weekly visual track inspections, quarterly inspections to determine the need for track resurfacing, and ultrasonic testing to detect internal defects in the rail.

Because they must uphold a high standard to support rail service, we schedule replacements for most track assets on a cyclical, age-based replacement based on their lifespan. Each asset has a lifespan that varies from 15 to 50 years. The inventory and status table contains track inventory and quantities that will be coming due for replacement in the upcoming capital programs.

Inventory and status

<table>
<thead>
<tr>
<th>Asset</th>
<th>Total</th>
<th>Units</th>
<th>Percent Due for Replacement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ballast</td>
<td>500</td>
<td>Track Miles</td>
<td>35%</td>
</tr>
<tr>
<td>Grade Crossing</td>
<td>417</td>
<td>Each</td>
<td>64%</td>
</tr>
<tr>
<td>Rail</td>
<td>5,374,021</td>
<td>Linear Feet</td>
<td>46%</td>
</tr>
<tr>
<td>Switches</td>
<td>916</td>
<td>Each</td>
<td>26%</td>
</tr>
<tr>
<td>Tie</td>
<td>1,519,134</td>
<td>Each</td>
<td>20%</td>
</tr>
<tr>
<td>Construction Equipment</td>
<td>372</td>
<td>Each</td>
<td>35%</td>
</tr>
</tbody>
</table>

Investment needs

We evaluate track components individually and together over segments of the railroad to coordinate track work for fewer service disruptions. To facilitate our track-asset replacement program and perform work in a more cost-effective manner by addressing longer spans of track at one time, we must occasionally interrupt regular service. As we have limited opportunities to complete replacements without impacting our riders, we must plan track outages carefully and provide advance notice to potentially impacted riders. We have been continuously maintaining our track assets based on our cyclical track program.

Over the next 20 years, we need to:

- Continue cyclical track maintenance program by replacing:
 - Approximately 35,000–40,000 wood ties per year.
 - 18 rail miles of continuous welded rail per year.
 - About 13 mainline switches per year.
- Replace grade crossings at an accelerated pace of about 30 per year for the next few years to address the large number of grade crossings that are due for replacement and then continue a steady pace of about 12 per year after that.
- Continue the pace of investment in track construction equipment that supports track work.
- Plan to upgrade some assets as we replace them, where feasible.
 - Continue the effort to upgrade our busiest branches from wood to longer-lasting concrete ties.
 - Construct or reinforce right-of-way retaining walls.
 - Install of right-of-way fencing along with targeted track replacement efforts within West Side Yard, Hillside, Penn Station, and other selected areas.
- Improve drainage, where needed, to protect tracks from coastal flooding or heavy rainfall.

Jamaica Capacity Improvements

While planning for normal replacement of assets, we also assess other component or asset improvement opportunities at or around the affected work areas to be as efficient as possible. As an example of this, we are in the process of completing a series of interrelated improvements to track and switch layout at Jamaica that will greatly improve operations and reduce train congestion and delays.

The Jamaica Capacity Improvements will build upon the Hall Interlocking upgrades with additional reconstruction and expansion within Jamaica Station and Jay Interlocking located west of the station. This will greatly improve train routing flexibility and reliability through Jamaica Station and accommodate growing ridership through this busy hub that serves all but one of LIRR’s branches. The new signal system will support higher speed switches and streamline the track routes. Jamaica platforms will be extended to accommodate 12-car trains, as well as extending the E Yard of Jamaica. There will also be construction of a new wayside signal system. Throughout the station, there will be ongoing projects to improve passenger accessibility. This includes enhanced signage and implementing various customer amenities to make JFK AirTrain more easily accessible to the LIRR and subway passengers. In addition, new design efforts will take place to improve customer flow and improve passenger accessibility between platforms.
Signal, power, and communication systems work together so trains can run smoothly, safely, and frequently throughout the network. Signals ensure that trains follow the proper route at safe speeds maintaining proper distances from other trains. Our power assets ensure stable and sustainable traction power that provides propulsion for our electric railcars, and the power system provides an energy supply needed to run our signaling and communication infrastructure, as well as station lighting and electrical systems. Our communication systems consist of miles of cables, electronics, network components, displays, and other assets to provide information throughout the system. Upkeep and upgrading of these systems and their components are required for safe and reliable rail service, and investments in technological advancements for these systems will improve customer experience.

Our investment needs over the next 20 years include:

- Modernizing approximately 50 miles of signal systems and replace aging and/or obsolete components with latest-generation electronics providing modern and more reliable signal systems.
- Replacing about 10-14 substations in each capital program and replace or upgrade critical components at other substations. Third rail will also be upgraded to current standards and utility poles, power lines, building lighting, and electrical systems will be replaced.
- Installing up-to-date communication systems and components that will allow us to effectively monitor the system, provide information to LIRR crews and customers, and manage vast amounts of data in a technologically robust system.
Signals

Our signal systems enforce safe speeds and spacing of trains; they consist of interrelated components including cables, track relays, batteries, switch machines, cases and huts, and grade crossing mechanisms. We have multiple types of signal systems, ranging from the recently installed state-of-the-art signal technology on the Montauk Branch between Speonk and Montauk, to obsolete legacy systems installed during the Pennsylvania Railroad era.

Lines and interlockings (an interconnected system of signals and signal appliances that prevent conflicting train movements) that experience higher train traffic volumes are also assigned a higher priority for maintenance or replacement. For interlocking modernization, we prioritize replacing switch machines and electronic supervisory control systems in concert with track renewal programs. For full signal system replacements, we prioritize branches or a segment of a branch where the system is obsolete, or a majority of the signal assets are in poor or marginal condition. For segments that are not part of a complete signal system replacement project, the normal replacement program addresses the lowest-rated components. We consider age, lifespan, obsolescence, structural conditions of the cases or huts that the components are housed in, operational impacts, failure rates, testing, and vendor support availability when we prioritize signals for normal replacement. Shown here is an inventory and status of major signal assets.

Asset inventory and status

<table>
<thead>
<tr>
<th>Asset</th>
<th>Total</th>
<th>Percent in Poor/Marginal Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switch Machine</td>
<td>970</td>
<td>24%</td>
</tr>
<tr>
<td>Signal</td>
<td>812</td>
<td>51%</td>
</tr>
<tr>
<td>Supervisory and Control</td>
<td>174</td>
<td>37%</td>
</tr>
<tr>
<td>Equipment Location - Huts and Cases</td>
<td>1,374</td>
<td>59%</td>
</tr>
<tr>
<td>Gate Mechanisms</td>
<td>851</td>
<td>28%</td>
</tr>
<tr>
<td>Air System</td>
<td>17</td>
<td>82%</td>
</tr>
<tr>
<td>Battery</td>
<td>1,088</td>
<td>57%</td>
</tr>
<tr>
<td>Cable</td>
<td>7,979</td>
<td>54%</td>
</tr>
<tr>
<td>Electronic Equipment</td>
<td>283</td>
<td>6%</td>
</tr>
<tr>
<td>Wayside Interface Units (WIsUs- PTC signal component)</td>
<td>171</td>
<td>24%</td>
</tr>
<tr>
<td>Transponders (PTC signal component)</td>
<td>4,500</td>
<td>26%</td>
</tr>
</tbody>
</table>

Investment needs

In order to ensure high levels of safety and efficiency for trains moving throughout the network, we need to address assets in poor and marginal condition, as well as invest in technology and signaling upgrades so that the system is capable of reliably meeting current operational demands. Some segments of signal infrastructure are more than 60 years old, some have been upgraded recently, and some are at substantial risk of premature failure due to exposure to climate-change-related impacts of increased flooding, heat, and wind events.

We are focused on improving signal condition through asset and component replacements, modernizing corridors to achieve new safety and efficiency standards and preparing corridors for the effects of climate change. Over the next 20 years, we need to:

- Upgrade approximately 50 miles of signal systems in segments where 50%-75% of the signal components are rated poor/marginal on portions of the Port Jefferson, Far Rockaway, Port Washington, Oyster Bay, and Montauk branches.
- Continue normal replacement of relays, cables, batteries, switch machines, huts, and signals while examining all opportunities to combine normal replacement activities with signal modernization.
- Invest further in PTC, which will yield long-term safety benefits for the entire rail network and provide an additional layer of safety protection, particularly in situations where human error or unexpected circumstances may pose risks to train operations.
- Complete implementation of Centralized Train Control (including creating an emergency back-up location), which will give us the ability to monitor all trains from a central location, improving operations, communication, and the ability to respond to service disruptions.
- The centralized system also replaces our legacy train tower control system, reducing operating costs and future capital costs by eliminating the need to maintain towers and their related communication systems.
- Assets that are exposed to flooding, extreme temperatures, wind, and erosion will be prioritized for climate resilience protections. For signals at risk of flooding, this may include asset elevation and/or waterproofing.
Power

Our power system provides power to our electric railcars via third rail traction power, and it also provides electricity for our signal, lighting, and electrical systems at stations and yard buildings. Power assets, including substations, motor generators, cable, third rail, protection boards, lighting systems, cables, poles, and numerous other elements, are critical to providing reliable train service. Without a stable flow of power from our traction power substations to reliable third rail systems, our electric railcars can't move. Substation condition and capacity are the most critical elements within the power asset category. Substations typically house transformers and other equipment that convert electricity from the electrical grid to the proper current and voltage so it can be used by railcars.

Our power assets also include various third rail system assets, electric light and power assets—including our communication huts and cases, and lighting in station buildings, platforms, tunnels, and yards—as well as high tension assets including high-tension towers, power poles, and power lines. Without reliable electric power and lighting systems at facilities and the assets to carry electricity throughout the system, these facilities would not be functional.

Inventory and status

<table>
<thead>
<tr>
<th>Asset</th>
<th>Total</th>
<th>Units</th>
<th>Percent in Poor/Marginal Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substation Overall (age based)</td>
<td>129 (incl. ESA)</td>
<td>Each</td>
<td>92%</td>
</tr>
<tr>
<td>Substation Components</td>
<td>2,826</td>
<td>Each</td>
<td>22%</td>
</tr>
<tr>
<td>Electrical System*</td>
<td>13,217</td>
<td>Each</td>
<td>52%</td>
</tr>
<tr>
<td>High Tension Cable, Feeder, and Power Lines</td>
<td>494</td>
<td>Miles</td>
<td>17%</td>
</tr>
<tr>
<td>High Tension Equipment</td>
<td>7,805</td>
<td>Each</td>
<td>9%</td>
</tr>
<tr>
<td>Third Rail Bracket</td>
<td>42,096</td>
<td>Each</td>
<td>19%</td>
</tr>
<tr>
<td>Third Rail Cable</td>
<td>1,247,000</td>
<td>Linear Feet</td>
<td>19%</td>
</tr>
<tr>
<td>Third Rail Fiberglass Protection Board</td>
<td>1,662,000</td>
<td>Linear Feet</td>
<td>48%</td>
</tr>
<tr>
<td>Third Rail Wood Protection Board</td>
<td>15,000</td>
<td>Linear Feet</td>
<td>0%</td>
</tr>
<tr>
<td>Third Rail Reactor</td>
<td>115</td>
<td>Each</td>
<td>66%</td>
</tr>
<tr>
<td>Third Rail – Aluminum</td>
<td>79,000</td>
<td>Linear Feet</td>
<td>0%</td>
</tr>
<tr>
<td>Third Rail – Composite</td>
<td>1,108,000</td>
<td>Linear Feet</td>
<td>0%</td>
</tr>
<tr>
<td>Third Rail – Conventional</td>
<td>55,000</td>
<td>Linear Feet</td>
<td>97%</td>
</tr>
</tbody>
</table>

* Includes bridge electrical systems, tunnel and yard lighting, emergency generators, wayside power, communication rooms and huts, station building electrical systems, and station and platform lighting.

Asset inventory and status

Evaluation factors used to determine investment priority for power assets include age, location, power demand, equipment obsolescence, and lack of redundancy. This system helps ensure assets that are more crucial to our operations are evaluated for major overhaul or replacement before less critical ones, even if the less critical assets and components have been in service longer.

More than half of our substations were constructed in the early 1970s, and these have all exceeded their 35-year lifespan. While they still function safely, their critical components such as transformers and rectifiers, require additional maintenance and are more prone to failures. Substation replacements are necessary to ensure the proper movement of trains and comply with safety regulations—and they are major undertakings. They must be scheduled so the transfer from an old substation to a new one does not interrupt system power flow, and so the pacing aligns with the production levels of equipment manufacturers.

For substation power demand improvements, we have completed a Traction Power Load Study that evaluated the electrical capacity of our power infrastructure and helps to inform an investment strategy for future capital investments. Traction power simulations of future train operations were performed during the study to identify deficiencies and make recommendations to address these concerns. When performing normal replacements, we have been upgrading third rail from a composite to higher-performing aluminum rail, and we have been upgrading wood third rail protection board to fiberglass.
Investment needs

Our most critical power investment priority is the cyclical replacement of substations. Over the next 20 years, we need to:

- Replace the most critical substations that are beyond their useful life with greater frequency of failures.
- Continue to replace poorly performing critical components within substations to maintain a larger percentage of substations in good condition for a longer period.
- Prioritize component replacements at substations that don’t meet current standards or provide adequate power to meet demand.
- Continue cyclical replacement of third rail systems.
 - This includes cables, disconnect switches, protection board, and the third rail itself, along with replacement of negative reactors, and short tie extension brackets.
 - Third rail negative reactors will perform normal replacement by approximately 20 per capital program.
- Improve the capacity of our traction power system by implementing recommendations from the Traction Power Load Study:
 - Construct up to two new substations (Penn Station and Malverne on the West Hempstead Branch) to prevent the adjacent substations from being overloaded.
 - Expand Jamaica substation to meet demand.
 - Raise voltage at 22 existing substations.
 - Install additional cables at 60 third rail feeders and 84 negative feeders.
 - Upgrade 49 negative reactors, as well as third rail sections to aluminum in 12 key territories.
- Replace approximately 16,000 linear feet of conventional third rail with higher-performing aluminum rail in every capital program, (3,200 linear feet/year) as well as high tension and third rail components.
- Replace tunnel lighting at Atlantic Avenue and upgrade station and building electrical systems.
- Incorporate climate resilience strategies, including asset elevation and/or waterproofing for those that are susceptible to water inundation.

Communication infrastructure

Communication infrastructure allows effective information flow to keep our rail system running safely and smoothly. Fiber optic and other cable networks support power and signal systems; facilitate clear and timely communication between train operators, control centers, and station personnel; and allow us to make public address announcements and provide train arrival/departure information to our customers.

Some of the main components of the communications network also include communication poles/towers, fiber optic and copper cables, PBX (internal telephone network), radio networks, and communication components that support the customer communication systems. These assets comprise the various networks for continuous transmission of voice and data communications. As communication technology continues to evolve, dependence on reliable and readily available communication services continues to grow.

Radio systems include units onboard trains or carried by railway workers that are used for operations and maintenance. They support police activity, train operations, maintenance efforts, and emergency services.

Asset inventory and status

Our investment strategy focuses on deploying a more consistent generation of technology throughout the LIRR system to improve coverage and replace aging and obsolete components. We prioritize assets for replacement or upgrade when they are outdated or in poor or marginal condition. Assets with safety issues or regulatory compliance problems are given higher priority, as well as those with a higher criticality to operations and management.

Rapid advancements in communication technologies have wide-ranging benefits but can pose challenges when selecting and implementing the most suitable solutions. Emerging technologies will be evaluated so that we can ensure compatibility with existing systems. We will also need to accommodate a phased approach and utilize redundant systems. As communication assets become more interconnected and dependent on digital infrastructure, we will work with experts to ensure our communication assets are protected against cyber threats and safeguarded from unauthorized access to sensitive data. Inventory of major communication assets and their condition status is shown in the inventory and status table.
Investment needs

Investments in the fiber optic network and the cyclical replacement of communication pole lines form the core of the communication infrastructure needs. The fiber optic network will be installed with new equipment that will replace obsolete hardware and address assets currently in poor or marginal condition.

Over the next 20 years, we need to:

- Install new fiber optic station nodes to replace legacy equipment at 57 stations.
- Replace the Head End Radio Equipment with Voice over Internet Protocol technology that will remove the last legacy fiber optic network from service.
- Continue the ongoing effort to replace 1,000 communication poles per every five-year program to address deteriorated line poles.
- Invest in our communication component replacement program, alleviating the backup of assets in poor or marginal condition like Volt Direct Power plants, battery backup plants/uninterruptible power supplies, HVAC in communication rooms and huts, radio and antenna assets, and much more.
- Implement new land/wireless communication networks to support expanding business needs such as remote data collection, grade crossing and onboard cameras, and heat-on-rail detection.
- Upgrade 10-15 small communication huts and 4-5 large communication huts per capital program to support network capacity needs.
- Continue to invest in upgrading and modernizing our computer systems to support modern signal and communications systems that rely heavily on computer networking and processing.
- Protect communication infrastructure assets from climate change by elevating or waterproofing equipment at high risk for flooding. We are also considering future risk to communication assets from prolonged extreme heat in specifications and design of capital projects, and in parallel with regular replacements of assets.

Wooden poles
These communication poles carry the cable lines providing services to the LIRR communications systems.

PTC system
Positive Train Control System. (transponders, workstations, radio cases, dispatch center.

Radio base stations
Exist at numerous locations to provide individual block operators with the capability to communicate with trains entering the block.

Communication huts
Supports increased network capacity needs with CCTV video service at stations at other locations.
Overview of agency and assets

Metro-North Railroad (Metro-North) provides service into and out of Grand Central Terminal in New York City on our Hudson, Harlem, and New Haven lines, which extend as far north as Dutchess County in New York and as far east as Fairfield and New Haven counties in Connecticut, forming our East-of-Hudson service territory. West of the Hudson River, riders travel on our Port Jervis and Pascack Valley lines. This West-of-Hudson service—provided under an agreement with New Jersey Transit—serves Rockland and Orange counties in New York. 4

We need to invest in and properly maintain our aging infrastructure to successfully support current and future operations and ensure the delivery of safe and reliable service that meets the growing and changing demands of Metro-North’s riders.

Metro-North by the Numbers:

- Weekday ridership: Approximately 210,000 trips
- 912 railcars
- 39 shops and 11 yards
- 85 passenger stations
- 513 miles of track (254 track miles of third rail power)
- 331 overhead bridges, 201 undergrade bridges, 9 tunnels, 4 viaducts
- 571 mainline switches
- 67 power substations

4. This plan reflects Metro-North’s New York state assets. The New Haven Line assets operated by Metro-North in Connecticut are the responsibility of Connecticut Department of Transportation and certain assets of the Port Jervis and Pascack Valley Lines are the responsibility of NJ Transit.
Investment needs highlights

Over the next 20 years, our priority investment needs include:

Passenger vehicles and yards
- Purchasing over 750 new railcars, including 15 new locomotives for West-of-Hudson service, to replace aging cars and improve reliability, accessibility, and passenger experience.
- Expanding railcar maintenance facilities and train storage yards, and replacing outdated and temporary shops with modern workshops for our Maintenance of Way teams.

Passenger stations
- Rehabilitating stations to address high priority structural issues, particularly at Harlem Line stations with deteriorating platforms.
- Improving the customer experience for all of our riders by replacing station elevators and by installing upgraded public address (PA) systems, real-time train information screens, and security cameras at over 50 stations.

Grand Central Terminal and Grand Central Artery
- Upgrading and modernizing the structure and support systems of the historic Grand Central Terminal Building and connecting infrastructure.
- Reconstructing deteriorated structural elements of the 110-year-old Grand Central Train Shed, the massive, bi-level structure underneath Park Avenue.
- Continuing to reconstruct deteriorated structural elements and make improvements to the Park Avenue Viaduct and the Park Avenue Tunnel.

Right-of-way
- Doubling the pace of the current track replacement program.
- Replacing and rehabilitating bridges and drainage systems, focusing on over 100 bridges and existing poor drainage areas.
- Implementing the climate resilience measures needed to protect Metro-North assets from the effects of climate change, such as stormwater flooding, extreme heat, and sea level rise.

Signals, power, and communications
- Upgrading our traction power system with new power substations which will improve reliability and allow us to run more trains across the Metro-North network.
- Replacing over 150 miles of Harlem and Hudson line legacy, relay-based signal systems with new, updated signaling technology and improving our ability to monitor and regulate train service by installing a next generation, modernized Operations Control Center.
Our asset rating methodology

We perform regular and comprehensive inspections of all of our assets. Through these inspections, all assets are given a condition rating on a scale of 1 to 5, based on various factors, including age, condition assessment, performance, reliability, safety history, and location. Assets with a rating of 1 (poor) or 2 (marginal) help us identify where we need to focus investment needs the most. This rating scale is consistent with the Federal Transit Administration’s Transit Economic Requirements Model scale. A brief description of the rating scale is provided below.

1. Poor (Deteriorated): Critically damaged or in need of immediate repair, well past useful life. Assets are operable with extraordinary maintenance, but have serious functional deficiencies and/or can be expected to experience potentially unacceptable stoppages over the next five years, which could have serious negative impacts on service within the existing maintenance framework. Assets require operating-funded interventions, which may include more frequent inspections and/or repairs that may include removing the asset from service until repairs can be performed. Capital investment in these assets is needed on a priority basis.

2. Marginal (Deficient): Deteriorated, in need of replacement, and may have exceeded useful life. Assets have functional deficiencies and/or can be expected to experience above-normal stoppages over the next five years, but severity of customer impacts or changes to operational practices can be held within acceptable bounds for a time within the existing maintenance framework. If capital investment is/was deferred for these assets, added maintenance and operating expenses would be expected.

3. Adequate (Acceptable): Moderately deteriorated, but has not exceeded its useful life. Assets that are not necessarily meeting all current technical and functional standards, but are considered adequate for service and can be expected to experience normal stoppages that can be fully accommodated within the existing maintenance framework. These assets may require cyclical replacement in the next five years.

4. Good: No longer new, but in good condition and still within its useful life. Assets may be slightly deteriorated, but are overall functional within the normal maintenance practices.

5. Excellent (Modernized): No visible defects, new or near new condition and may still be under warranty (if applicable). Considered to meet most or all important technical and functional standards.

It is important to note that an asset condition rating is not an indicator of safety. Safety and risk assessments are performed separately from asset condition ratings and are addressed on an ongoing basis.
Our trains provide approximately 200,000 passenger trips every weekday, with most arriving in Manhattan from points north in New York and east in Connecticut. When trains are not in service, our shops, yards, and facilities allow for fleet storage, maintenance, and inspection services, and play an important role in our continuing ability to provide safe and consistent service.

Metro-North owns a fleet of over 900 passenger vehicles, ranging in age from new to over 50 years old. To ensure passenger safety, federal regulations and Metro-North procedures require testing and inspections of railcars and locomotive components and systems each day they are in service. This includes inspecting braking and power systems, lights, wires, cables, doors, air conditioning, radios, and more. These basic inspections take place at our yards before trains are put into service. Yards are also used to stage repair materials for assets across our network. More extensive work is performed at our shops, where railcars undergo regular interior and exterior cleaning, as well as more comprehensive inspections and scheduled maintenance at recurring intervals to ensure reliability.

As demand for Metro-North service has grown over the years, so too has the size of the fleet, resulting in inadequate shops and yard space in certain locations. Our vision for shops and yards includes new and upgraded facilities configured to better support railroad operations for today and into the future. By providing specialized facilities for different types of railcars, we can better ensure the reliability of our entire fleet. Building new shops for our Maintenance of Way (MOW) crews will provide the space needed to address repairs more rapidly throughout our system.

Our investment needs over the next 20 years include:

- Purchase over 750 new vehicles, including 15 new locomotives for West-of-Hudson service, which will allow us to retire aging railcars in our fleet.
 - The new fleet will be accessible, energy-efficient, utilize environmentally friendly technologies, and will incorporate modern amenities such as charging ports, digital screens, and communication systems to improve the rider experience.
- Replace inadequate, outdated facilities and temporary buildings with modern shops to properly support our MOW teams.
- Expand railcar maintenance facilities and train storage yards at key locations so more trains can be inspected, repaired, and returned to service quickly and efficiently.
- Build resilience against the effects of climate change. We must ensure new facilities account for the impacts of increased flooding and heat by including elements such as enhanced drainage systems, perimeter walls for floodproofing, and elevated assets.
- Continue to support MTA-wide sustainability efforts and reduce greenhouse gas emissions by capitalizing on opportunities to implement technologies that conserve energy, reduce fossil fuel use, and generate renewable energy on-site.
Passenger vehicles

Keeping our passenger vehicles in good condition is vital to ensuring safe and reliable service, making the maintenance and upkeep of these assets critical to providing the riding experience our customers expect. Our passenger vehicle fleet includes:

Coaches
A railcar that carries passengers; one or more coaches make up a train that is pushed or pulled by a locomotive.

Locomotives
A vehicle that pulls and pushes passenger coaches. Locomotives are powered by both diesel and electricity.

Electric Multiple Units (EMU):
These passenger railcars, which include our M3, M7, and M8 models, are self-propelled coaches that draw electric power from a third rail or overhead wires, and do not require a locomotive.

We will continue replacing passenger vehicles as they reach the end of their useful life and we plan to procure locomotives that can use electric power more extensively and efficiently, resulting in reduced greenhouse gas emissions and fossil fuel dependence.

Asset inventory and status

We use two primary indicators to assess the condition and performance of our fleet, which together guide decisions on when further investment or replacement is warranted. For example, for our EMU railcars, the condition and performance indicators are as follows:

- **Useful life:** Older railcars are more prone to break down, generally require more extensive and costly maintenance to keep in service, and are less comfortable for our passengers due to worn interiors. They also sometimes lack modern amenities or do not meet the accessibility standards we have for new railcars. Any railcar over the age of 40 is considered past its useful life. We plan to continue replacing railcars before they reach the end of their useful life.

- **Mean Distance Between Failures (MDBF):** This is a measure of reliability that expresses the railcar’s mean (average) operating distance mileage traveled between all train delay failures. The MDBF measure is used to inform decisions about how and when to perform maintenance, as newer cars perform much better than cars slated for replacement. In 2022, the MDBF of the M8 EMUs was approximately 802,000 miles compared to about 93,000 miles for the M3 EMUs.

Investment needs

To keep all EMU railcars within their useful life of 40 years, we will need to replace over half the fleet in the next 20 years. We plan to purchase new locomotives for increased reliability and lower emissions; replace our older M3 EMUs with new, modern M9A EMUs; replace the East-of-Hudson coach fleet; and begin the replacement of our M7 EMUs when they reach the end of their useful life.

Over the next 20 years, we need to:

- Upgrade the passenger fleet through the continued replacement of the M3 EMUs that have been in service on the Hudson and Harlem lines since the 1980s and are past their useful life. These will be replaced with new M9As that are a next generation railcar equipped with multiple amenities to improve customer experience, including better accessibility, wider seats, electrical outlets, and multimedia screens.

- Begin the planning process needed to replace the M7 fleet. MNRR’s M7 fleet (36% of MNRR’s total fleet), will reach the end of its useful life at the end of the 20-year period. A failure to commence the replacement of the M7 cars by the end of their useful life will potentially cause greater frequency of breakdowns, increased operating costs, and trains not offering the quality and customer experience that our passengers deserve.

- Upgrade our locomotive fleets, including replacing locomotives in service in Metro-North’s West-of-Hudson territory and diesel locomotives used in East-of-Hudson service.
 - Upgraded “dual-mode” engine technology will be employed for locomotive procurements. This maximizes the potential to use electricity from the third rail or overhead catenary, greatly reducing the use of diesel, and together with Tier IV engines, will reduce the production of both greenhouse gas emissions and local air quality pollutants, such as particulate matter and nitrous oxide.

- Upgrade our coach fleet through the replacement of the Shoreliner coaches used on our East-of-Hudson services. The oldest cars are nearing the end of their useful life and not up to current accessibility standards. The new fleet will be compliant with the Americans with Disabilities Act (ADA).
Shops, yards, and facilities

Yards are used for the staging, inspecting, servicing, and storage of our passenger vehicle fleets. The yards are also home to many of our shops, which fall into two categories based on function.

- Maintenance of Equipment (MOE) shops, which are found exclusively in our yards, are where our workers perform inspections, repairs, retrofits, and overhauls of passenger vehicles.
- Maintenance of Way (MOW) shops are where we store or maintain equipment and materials needed for maintaining and improving the rail system and right-of-way infrastructure. Most MOW shops are located in our yards, but they also exist throughout the railroad territory.

Asset inventory and status

Shops and yards assets are evaluated based on their condition, age, and performance, as well as if sufficient space is available to meet the needs of the railroad. Asset performance considers the ability of the shops and yards to support the fleet and meet maintenance needs. Facilities that are unable to meet these fleet and maintenance needs will be upgraded and reconfigured or replaced. Replacement will be targeted toward poor performing components that are likely to impact fleet reliability or operations.

Inventory and status

<table>
<thead>
<tr>
<th>Asset</th>
<th>Total</th>
<th>Percent in Poor/Marginal Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Employee Facilities</td>
<td>9</td>
<td>13%</td>
</tr>
<tr>
<td>Utilities</td>
<td>8</td>
<td>38%</td>
</tr>
<tr>
<td>Yard Utilities</td>
<td>36</td>
<td>42%</td>
</tr>
<tr>
<td>Plumbing and Drainage</td>
<td>37</td>
<td>41%</td>
</tr>
<tr>
<td>Fire Protection</td>
<td>2</td>
<td>50%</td>
</tr>
<tr>
<td>Yard Substation</td>
<td>4</td>
<td>0%</td>
</tr>
<tr>
<td>Air Curtain Doors</td>
<td>1</td>
<td>0%</td>
</tr>
<tr>
<td>Building Exterior</td>
<td>19</td>
<td>21%</td>
</tr>
<tr>
<td>Building Utilities</td>
<td>16</td>
<td>6%</td>
</tr>
<tr>
<td>HVAC</td>
<td>19</td>
<td>11%</td>
</tr>
<tr>
<td>Roofs</td>
<td>19</td>
<td>16%</td>
</tr>
<tr>
<td>Walls</td>
<td>27</td>
<td>11%</td>
</tr>
<tr>
<td>Windows</td>
<td>15</td>
<td>7%</td>
</tr>
<tr>
<td>Equipment (e.g., cranes, equipment lifts, wheel true)</td>
<td>235</td>
<td>89%</td>
</tr>
</tbody>
</table>

Investment needs

We continuously review the significant interrelated investment needs supporting our shops, yards, and related facilities, including plans supporting new railcars and other yard improvements needed for future needs and fleet growth. To ensure our facilities can meet future operational requirements, we are taking a systemwide planning approach with a focus on reconfiguration, reconstruction, and modernization.

Over the next 20 years, we need to:

- Replace outdated, deteriorated, and temporary shops with new, permanent facilities to support our MOW workforce, providing them with sufficient facilities needed for the ongoing maintenance of the railroad. This includes new facilities at Harmon, North White Plains, Brewster, and in the Bronx.

- Upgrade, reconfigure, and expand MOE shops and yards to better serve the current and future fleet, including the arrival of the M9As, the Shoreliner coach replacements, and new locomotives. We will replace our existing train washing facilities, which have exceeded their useful life.
 - We will reconfigure and expand Brewster Yard to meet our growing fleet needs and improve service operations for the Harlem Line. We will add repair tracks and train servicing locations at our MOE shops and yards.

- Construct a new warehouse to relieve insufficient storage space at existing facilities.

- Make facilities located in coastal flood zones, near streams and rivers, and/or in areas with insufficient local drainage that are prone to flooding, more resilient with investments such as backflow valves and pumping mechanisms.

- Seek to use component replacement opportunities to implement new technologies that can conserve energy, reduce fossil fuel use, and reduce demand for grid electricity. By integrating these practices into normal investment cycles, we will maximize the long-term operational cost savings that are generated through updated building systems.

- Install electric vehicle charging equipment dedicated for MNR use in appropriate locations to meet MTA goals of transitioning to 100% zero-emissions light-duty non-revenue vehicles by 2035 and medium/heavy-duty non-revenue vehicles by 2040.
We have 85 passenger stations across five lines in New York state. Passenger stations contain many interrelated systems and individual components, all of which must be maintained so that customers can safely access trains. Station buildings and canopies provide passengers areas to wait for trains; overpasses and underpasses provide access between platforms and other station areas; and platforms allow for safe boarding of our trains. Elevators and escalators provide critical accessibility for our riders, and public communication systems provide key information and audio/visual messages to inform riders of important service updates.

Our investment needs over the next 20 years include:

- Rehabilitate stations to replace dated structures and aging assets, and provide the communities we serve with modern, comfortable stations.
 - Replace deteriorating platforms and other major components at 19 stations on the Harlem Line.
 - Improve station access by constructing new elevators and overpasses and replacing all 105 existing elevators.

- Improve customer experience by enhancing communication systems at over 50 stations, including new PA systems, real-time train information screens, and security cameras. Once completed, all of our customers would use stations with upgraded communication amenities.

- Replace and enhance our aging communication system and network infrastructure with the latest technology to accommodate current operations, address critical obsolescence issues, and provide compatibility and capacity for future needs. This includes:
 - Cyclical upkeep of short-lived technology assets to maintain existing communication and security services.
 - Upgrading and enhancing network infrastructure and obsolete communication systems to provide for updated PA/real-time train information, security cameras with remote monitoring/video management capability, elevator/escalator control and monitoring capabilities, and station intercoms at passenger stations.
Passenger stations

Asset inventory and status

Comprehensive inspections of station assets are performed on a regular basis. During inspection, a rating is assigned to all components of the station assets such as elevators, platforms, station buildings, stairs, and ramps. Based on these component ratings, a prioritization list is analyzed to understand the trends and the progress toward getting all assets into good or better condition, as well as to schedule the required capital investments to preserve and maintain their integrity.

An example of an age-based assessment for stations is:

• Condition: Most station component replacement needs are determined primarily by component condition. The amount of deterioration in each component of the station is assessed during inspection and assigned a numerical rating.

• Useful Life: Some station assets or components such as elevators, which are generally replaced on a cyclical basis, are tracked based on their useful life. For example, the useful life of a station elevator is typically 20 years. Older elevators are more prone to break down and generally require more extensive and costly maintenance to keep in service.

The results of a condition-based assessment of station assets and components are shown in the inventory and status table.

<table>
<thead>
<tr>
<th>Asset</th>
<th>Total</th>
<th>Percent in Poor/Marginal Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platforms</td>
<td>134</td>
<td>19%</td>
</tr>
<tr>
<td>Canopies</td>
<td>113</td>
<td>2%</td>
</tr>
<tr>
<td>Shelters</td>
<td>124</td>
<td>2%</td>
</tr>
<tr>
<td>Elevators</td>
<td>105</td>
<td>89%</td>
</tr>
<tr>
<td>Escalators</td>
<td>2</td>
<td>0%</td>
</tr>
<tr>
<td>Stairs</td>
<td>340</td>
<td>7%</td>
</tr>
<tr>
<td>ADA Ramps</td>
<td>83</td>
<td>2%</td>
</tr>
<tr>
<td>Overpass</td>
<td>50</td>
<td>0%</td>
</tr>
<tr>
<td>Underpass</td>
<td>12</td>
<td>33%</td>
</tr>
<tr>
<td>Station Building</td>
<td>34</td>
<td>3%</td>
</tr>
<tr>
<td>Parking Lot</td>
<td>72</td>
<td>17%</td>
</tr>
<tr>
<td>Parking Garage</td>
<td>4</td>
<td>25%</td>
</tr>
</tbody>
</table>

North White Plains Station with station components

Investment needs

Our investment strategies focus on station assets in need of rebuilding and replacement, such as platforms, station access, building structures, and parking facilities identified as in poor or marginal condition. Where feasible, we also seek to construct new elevators, crossovers, and ramps to make stations more accessible for our riders.

Over the next 20 years, we need to:

• Address the deteriorated platforms at 19 stations on the Harlem Line that currently require additional structural support and maintenance.
 - We are proposing an accelerated pace to replace platforms at these stations, as well as other critical station components. We aim to minimize disruption to passengers by planning station work in tandem with other rehabilitation work along the right-of-way.

• Accelerate the pace of repairing and replacing station assets. This effort will focus on station access (stairs, ramps, overpasses, and underpasses), station parking facilities (lots and garages), and station buildings.
 - Focus first on our oldest elevators and those with the greatest reliability issues. Establish a program to ensure all 105 existing station elevators are replaced over 20 years, as they reach the end of their useful life.
 - Continue to add elevators, ramps, and create accessible routes between platforms to make full-service stations in Metro-North-operated territory fully accessible, where feasible.

• Identify opportunities for flood protection and other climate resilience improvements to ensure station components are protected from extreme weather.

• When upgrading stations, maximize opportunities to conserve energy and reduce fossil fuel use, such as exploring the feasibility to deploy solar photovoltaics for on-site renewable energy generation.
Public communications and security

Metro-North’s communication information system supports customer service applications including telephone, PA system, visual information display, closed circuit television (CCTV), and fare collection, which includes ticket vending machines, customer communication intercoms, and numerous other functions. Together, these technologies provide key service updates to passengers, increase security within our stations, and facilitate efficient fare payments.

Asset inventory and status

Several prioritization factors are considered for communication investments and are evaluated in concert with a paced, continuous replacement cycle. Asset age compares the actual age of the communication equipment to its lifespan; when the equipment is close to exceeding its maximum age, it is prioritized for replacement. Asset obsolescence prioritizes installing new technologies; as communication technology changes, obsolete technology becomes more difficult to maintain and parts are harder and more expensive to acquire. Asset condition defines the physical state of the communication equipment, based on number and frequency of repairs and tickets. Asset criticality includes factors such as a role in maintaining safety, sustaining Metro-North operations, and supporting data needs.

<table>
<thead>
<tr>
<th>Inventory and status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asset</td>
</tr>
<tr>
<td>Office (head end) Public Address/Visual Information System (PA/VIS)</td>
</tr>
<tr>
<td>Grand Central Terminal Big Board</td>
</tr>
<tr>
<td>Grand Central Terminal Arrival/Departure Boards</td>
</tr>
<tr>
<td>Grand Central Terminal Gate Boards</td>
</tr>
<tr>
<td>Grand Central Terminal Employee Displays</td>
</tr>
<tr>
<td>Grand Central Terminal Station PA (speakers, ambient sensing microphones)</td>
</tr>
<tr>
<td>Grand Central Terminal Customer Communications Network/Cable Plant</td>
</tr>
<tr>
<td>PA/VIS - Ticket Office</td>
</tr>
<tr>
<td>Station Digital Displays</td>
</tr>
<tr>
<td>Station PA (speakers, ambient sensing microphones)</td>
</tr>
<tr>
<td>Station Intercoms</td>
</tr>
<tr>
<td>Station Communications Network/Cable Plant</td>
</tr>
<tr>
<td>Station Equipment (controllers, digital signal processors, amplifiers)</td>
</tr>
<tr>
<td>Security Head End, Workstations, Servers</td>
</tr>
<tr>
<td>Security Cameras, Recorders and Server</td>
</tr>
<tr>
<td>Security Switches, field data transfer links to head end security system</td>
</tr>
</tbody>
</table>

Investment needs

Our top priority in this category is to improve the customer communication, safety, and security systems for Grand Central Terminal and passenger stations. Over the next 20 years, we need to:

- Advance our Project Customer Service Initiatives (CSI) program, which focuses on improvements to both communication and security assets. Over the next 20 years, we will complete Project CSI at all remaining Metro-North passenger stations in New York. The program includes the following:
 - An integrated PA/video system with voice and video messaging.
 - Real-time train information displays.
 - Elevator and escalator control and monitoring capabilities with the ability to communicate with customers needing elevator service, as well as control of elevators at select stations.
 - Security cameras with remote monitoring/video management capabilities.
 - Station intercoms.

- Upgrade and expand the existing Grand Central Terminal security system including hardware/software platforms, networks and technologies, and camera coverage.

- Replace/up grade the Grand Central Terminal PA System assets including speakers and amplifiers.

- Replace the Grand Central Terminal LED digital display technology in historic areas, and provide upgrades for interoperability with Grand Central Madison.

- Replace aging and obsolete passenger station communication and security assets on a cyclical basis, as well as upgrade obsolete systems to new technologies, in particular older generation station displays, security cameras, security data transfer switches, and video recorders.

- Upgrade the office control systems for all Grand Central Terminal and station audio/visual communication and security systems with modern systems.
Grand Central Terminal is one of New York’s most iconic buildings and the heart of the Metro-North network. The southern terminus of our Harlem, Hudson, and New Haven lines, many Metro-North journeys begin or end at Grand Central, while others continue from Grand Central—which connects to five subway lines and the Long Island Rail Road—across the city and region.

Many visitors only see the terminal building itself, but for the terminal to fulfill its intended purpose, there is substantial adjacent infrastructure that must also be maintained. All Metro-North trains must first traverse the Grand Central Artery, which is comprised of three other structures: the Park Avenue Viaduct, Park Avenue Tunnel, and the Grand Central Train Shed. Used by four out of every five Metro-North customers each day, the artery is crucial to Metro-North’s service.

Our investment needs over the next 20 years include:
- Investing in the Grand Central Terminal and Grand Central Artery so Metro-North continues to serve the region, bringing nearly 40 million annual riders to New York City on its three East-of-Hudson rail lines.
 - Grand Central Terminal: Renovating public areas such as restrooms, elevators and escalators, stairs, and ramps, as well as non-public areas for utilities and employee facilities within the terminal; addressing needed improvements to structural support, passenger platforms, and leak remediation; investing in security and ventilation systems and complete fire and life safety improvements; and performing comprehensive preservation work to the historical landmark building.
 - Grand Central Artery - Train Shed: Reconstructing deteriorated structural elements of the 110-year-old Train Shed, the massive, bi-level structure underneath Park Avenue, including the vital Train Shed roof replacement project, as well as other structural repairs, and making improvements to the Train Shed’s ventilation and other safety systems.
 - Grand Central Artery: Park Avenue Viaduct: Continuing to reconstruct deteriorated structural elements of this critical section of elevated railroad.
 - Grand Central Artery - Park Avenue Tunnel: Improving tunnel ventilation and safety systems and emergency egress capabilities, while also completing priority structural repairs needed in the Park Avenue Tunnel.
Grand Central Terminal

Midtown Manhattan was shaped by Grand Central Terminal. When railroads first arrived on East 42nd Street in the 1830s, much of Midtown was undeveloped. The current terminal building opened in 1913, as Midtown grew into the busy core of New York City. Today, Grand Central receives over 750,000 daily visitors, and it is vital that we invest in this landmark terminal building now in order to keep it running for decades to come.

Investment needs

Continued planned investments in the terminal building are needed to keep Grand Central Terminal in good condition for years to come. Asset replacement/restoration will help ensure the structural and aesthetic integrity of this major transportation hub and preserve its historical importance to New York City. Over the next 20 years, we need to:

- Make needed structural improvements to the terminal building, including:
 - Improve the terminal’s structural support system and roof, and rehabilitate the block area and the roadway viaduct around the terminal.
 - Make repairs to the terminal platforms, platform edges, and expansion joints.
 - Continue to repair leak infiltration from surrounding buildings, streets, and sidewalks into the Grand Central Terminal complex.

- Make timely repairs to the architectural features of the historic terminal building, such as walls, floors, ceilings, doors, canopies, and ramps to ensure the landmark Grand Central Terminal remains in first-class condition.

- Prioritize fire protection improvements, guided by a recently completed systemwide utilities study. This includes improvements to sprinkler systems, and the terminal’s ventilation, security, and safety systems, as well as carry out plumbing, electrical, and HVAC infrastructure replacements throughout the terminal.

- Improve the customer experience by adding new Biltmore Room restrooms, make repairs to the Roosevelt Passageway, improve elevators and escalators, and install more accessibility and safety signage.

While we work to preserve this landmark structure, we will strive to ensure that operations can continue during updates. Proper planning the investments and funding will be important in minimizing these disruptions given the large number of daily Grand Central Terminal passengers, as well as visitors and tourists.
Grand Central Artery

Over the next 20 years, it is critical that we invest in the Grand Central Artery. Each of the artery’s three structures is over 100 years old and must be rebuilt, improved, or significantly repaired to keep Metro-North service safe and reliable—all while trains continue to operate. As we work on the artery, we will coordinate closely with the community as work takes place along Park Avenue and surrounding streets.

Grand Central Artery:
Train Shed

Grand Central’s 44 platforms and 67 operating tracks are housed in the Train Shed, a 110-year-old, two-level structure under Park Avenue that stretches from the terminal building to East 57th Street. Since this is where most Metro-North trips begin or end, the Train Shed is crucial to Metro-North service. In addition to rail infrastructure, the Train Shed hosts a myriad of utility cables, pipes, and structures that support a variety of city services. A century ago, over a dozen city blocks were built directly on top of the Train Shed. Today, the Train Shed holds up several of Midtown’s largest skyscrapers, as well as Park Avenue itself. Over time, weather, salt, and water have damaged and deteriorated the roof, making it crucial that we replace the roof as we rehabilitate the Train Shed.

Investment needs

Our priority investment in the Train Shed is roof replacement. This will address water infiltration, corrosion, and structural deficiencies, and make safety improvements. Metro-North recently completed installation of a new fire standpipe system in the Lower Level of Grand Central Terminal and is ready to begin installing a new fire standpipe system for the Upper Level. We are also implementing priority repairs to address the most urgent locations. To save time and money as we reconstruct the Train Shed roof, we are using innovative strategies, for example, our current public-private partnership with JP Morgan Chase for the redevelopment of 270 Park Avenue. The remaining work needed to complete the Train Shed rehabilitation project will continue over the next 15 years, and this work will ensure that the Train Shed is in good condition and able to hold up Park Avenue for decades to come.
Grand Central Artery: Park Avenue Tunnel

Our trains approach or leave the Grand Central Train Shed via the Park Avenue Tunnel. This tunnel carries thousands of Metro-North customers every day under 40 blocks of Park Avenue in Manhattan, between East 57th Street and East 97th Street. Nearly 150 years old, the Park Avenue Tunnel is in need of improvements that will strengthen its structure and safety.

Investment needs

The Park Avenue Tunnel investment needs focus on priority structural repairs and safety improvements. Over the next 20 years, we need to:

- Construct two additional emergency exits at 65th Street and 79th Street, supplementing existing exits in the tunnel, as well as completing the following tunnel projects:
 - Replacement of the tunnel lighting.
 - Replacement of the steel conductor third rail with aluminum.
 - Upgrades to the tunnel alarm and tunnel fire standpipe systems.
- Upgrade ventilation and supplement critical infrastructure that provides ventilation for the tunnel.
- Undertake much needed priority structural repairs in the tunnel and, where possible, bundle communication improvements with planned work to take advantage of cost and time savings opportunities.

Grand Central Artery: Park Avenue Viaduct

The Park Avenue Viaduct is Metro-North’s elevated gateway to Manhattan, carrying approximately 750 trains every weekday between the Harlem River and the entrance of the Park Avenue Tunnel at East 97th Street. Much of the aging viaduct’s infrastructure dates from the 1890s, and we are focusing on the replacement of the elevated steel structure that carries four tracks between East 110th Street and the Harlem River Lift Bridge.

Investment needs

After a fire beneath the Park Avenue Viaduct disrupted service for thousands of Metro-North passengers in 2016, the public was reminded of the operational importance and vulnerability of the then 125-year-old structure. With in-depth, hands-on inspections occurring since 2016, there have been numerous structural deficiencies identified. Fatigue-related defects in the steel girders and connections were appearing more frequently, growing each year, and repairs were not keeping up. To address the root causes of these defects, Metro-North has begun a comprehensive rehabilitation of the viaduct. This effort began in the 2020-2024 Capital Program, which planned for the complete replacement of the viaduct between East 115th and East 120th Streets. In 2022 and in 2023, we made arrangements to extend work up to East 123rd Street and began advanced planning work on the next segment planned to be replaced, between East 127th and East 132nd Streets. Future phases, which will focus on replacing other segments and rehabilitating the viaduct deck, are currently planned for inclusion in the 2025-29 Capital Program.
Right-of-way infrastructure is a grouping of asset categories that make up the physical space used by the railroad and include line structures and track. Line structures is a category of assets that includes bridges, viaducts, tunnels, culverts, and retaining walls, as well as various sub-components within each asset that require continuous maintenance to guarantee their reliability and the safety of our riders. Track assets include rails, ties, switches, grade crossings and ballast. These assets, which also support the freight operations that transport goods throughout the region, are subject to heavy use and continuously exposed to harsh and changing weather conditions.

Our investment needs over the next 20 years include:

• Increasing our pace of rehabilitating and replacing our track and structures to provide safe and reliable service. We will also increase our use of preservation methods, such as bridge painting, that will extend the lifespan of our existing structures and decrease structural deterioration.

• Purchasing equipment such as track laying machines that will allow us to implement construction and track replacement methods that are faster and more cost-effective.

• Addressing the threats of climate change by:
 - Protecting the Hudson Line from flooding due to rising sea levels.
 - Implementing a long-term resilience strategy to protect our right-of-way assets from extreme rainfall and prolonged heat waves.
Line structures

Our line structures are crucial for the proper functioning of our system through, over, or under obstacles like roadways, water bodies, or along varying terrain. Line structures include undergrade bridges, overhead bridges, tunnels, culverts, and retaining walls. Undergrade bridges allow trains to pass over an obstacle (i.e., the obstacle is under the tracks), and overhead bridges allow trains to pass under an obstacle (i.e., the obstacle is above the tracks). Tunnels are underground passages or channels that provide the means for our rail to traverse underneath highly developed neighborhoods or difficult topography. Culverts are designed to allow water to flow underneath tracks to manage drainage and prevent flooding. Retaining walls are built to hold back soil and provide support for our elevated structures.

Investment needs

Our Metro-North Bridge Management Program and inspection manual establishes standards to which bridge assets must be maintained. We monitor assets such as bridges, culverts, tunnels and retaining walls on an individual level and determine the overall rating for each structure to prioritize work throughout the system. Assets are selected for rehabilitation or repair work based on condition rating and other critical factors, including but not limited to inadequate load ratings (the weight of trains that bridges are capable of carrying), fracture critical construction (if a structure has single points of failure), and current operating restrictions (speed or carrying capacity). Once priorities are identified, our MOW team evaluates other structural assets surrounding the prioritized bridge for repairs or rehabilitation to maximize the reach of our work and minimize service disruptions. Over the next 20 years, we aim to bring all line structures into good condition.

Over the next 20 years, we need to:

- Address the backlog of bridges, culverts and retaining walls in poor and marginal condition by increasing the pace of our work and addressing multiple structures in close proximity at one time. Rehabilitate and replace assets, some over 100 years old with major fatigued components, with new assets to ensure optimal and safe railroad operations.
- Accelerate repair and preventative work, such as removing corroded beams and painting and waterproofing structures to preserve them against further corrosion and extend their lifespan.
- Retrofit line structures for climate resilience. Strategies for achieving this include appropriately sizing culverts for future storm events and stabilizing retaining walls in vulnerable areas. Incorporating these strategies provides better protection to our track, as well as structures.
- Plan structure work in tandem with work on other assets, such as track and stations, to ensure service disruptions to our customers are as minimal as possible.

Asset inventory and status

To keep all of our structures in a safe and reliable condition, we conduct regular inspections to determine the overall asset condition and to determine priority locations for rehabilitation and replacement. The many components related to structure, for example steel girders and abutments, are comprehensively assessed through our bridge inspection program. The results from our condition-based assessment of line structure assets and components are shown in the inventory and status table.

![Willet Ave undergrade bridge](image-url)

Inventory and status

<table>
<thead>
<tr>
<th>Asset</th>
<th>Total</th>
<th>Percent in Poor/Marginal Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undergrade Bridge</td>
<td>181</td>
<td>46%</td>
</tr>
<tr>
<td>Culvert - Undergrade</td>
<td>189</td>
<td>68%</td>
</tr>
<tr>
<td>Overhead Bridge</td>
<td>313</td>
<td>23%</td>
</tr>
<tr>
<td>Retaining Wall</td>
<td>707</td>
<td>27%</td>
</tr>
<tr>
<td>Tunnels</td>
<td>9</td>
<td>11%</td>
</tr>
</tbody>
</table>
Track

Our track system is made up of several elements:

- **Ties**: Wood or concrete cross-members that hold the rails at a fixed width to form the track structure.
- **Rail**: Provides a running surface for the train wheels. Together with the ties, they form the track structure.
- **Switches (turnouts)**: Arrangements of ties and rails that allow trains to move from one track to another.
- **Crossings**: Concrete or rubber pads installed to allow vehicles to travel over streets.
- **Equipment**: On-track machinery and rolling stock supporting track maintenance and construction.

Asset inventory and status

Our track assets are assessed by age, condition of the asset, and based on operating conditions. When prioritizing track assets for replacement or improvement, we consider different factors by component. Track assets are generally replaced on a cyclical basis based on age or remaining lifespan. This includes replacing ties, rail, and turnouts, undercutting of ballast, as well as rail grinding and resurfacing, all of which help to ensure our rail components are meeting our high standards. We conduct regular inspections to determine the need for track resurfacing and ultrasonic testing to detect internal defects in the rail.

Inventory and status

<table>
<thead>
<tr>
<th>Asset</th>
<th>Total</th>
<th>Percent in Poor/Marginal Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade Crossing</td>
<td>49</td>
<td>35%</td>
</tr>
<tr>
<td>Hi-Rail Work Equipment</td>
<td>607</td>
<td>27%</td>
</tr>
<tr>
<td>Non-Revenue Rolling Stock</td>
<td>202</td>
<td>36%</td>
</tr>
<tr>
<td>Rail</td>
<td>1,004</td>
<td>39%</td>
</tr>
<tr>
<td>Ties - Concrete</td>
<td>468,174</td>
<td>39%</td>
</tr>
<tr>
<td>Ties - Wood</td>
<td>1,090,507</td>
<td>34%</td>
</tr>
<tr>
<td>Turnouts (switches)</td>
<td>838</td>
<td>45%</td>
</tr>
</tbody>
</table>

Investment needs

Our annual cyclical track program rehabilitates and replaces track and turnouts to provide a safe operating condition throughout our network. We are committed to continuously improving our methods of construction and replacement so that our track program can replace these components more efficiently.

Over the next 20 years, we need to:

- Accelerate the pace of investments to get to a more regular track replacement schedule. We are exploring opportunities to complement our cyclical track program with a third-party contractor utilizing a track-laying machine to efficiently replace tracks, ties, ballast, and third rail, where applicable.
- Address drainage and water inundation issues on tracks. Much of this is due to the topography that we traverse and is of particular focus as climate change puts these locations at further risk of coastal flooding, washouts, saltwater corrosion, and storm exposure.
- Continue investing in our high-rail work equipment, which allows us to replace track components and support right-of-way work and our fleet of service vehicles for maintenance needs that include railcar support equipment, rubber-tire vehicles, and steel wheel vehicles.
Signals govern the safe movement of trains as they travel along the line to their destinations. Our power system supports 490 track miles of electrified third rail and overhead catenary, which provide traction power to keep our electric trains moving. Our communication systems enable constant communication between customers, on-train staff, and rail controllers. Communication equipment also supports a myriad of other systems—including train control, radios, power, PA systems, and visual displays. Many of our existing legacy systems are aging and technologically obsolete, making them increasingly difficult to maintain. To support future needs, vital upgrades to these systems must be made.

Our investment needs over the next 20 years include:

- Prioritizing safety and reliability as we improve our signal system, replacing obsolete systems and technology.
- Upgrading our traction power system with new power substations, which will improve reliability and allow us to run more trains across the Metro-North network.
- Expanding a new, ethernet-based communications system to replace obsolete technology currently in use. This new system will better support the needs of other vital systems, such as signals, security, and radio communications, and improve customer communications through our public address system and informational displays.
Signals

Our signal system ensures that our trains operate safely, at the correct speeds, and at a safe distance from one another. This system encompasses many kinds of equipment—from the signals themselves that provide instructions to train operators whether to proceed and at what speed, to the switch machines that guide trains onto the correct routes, to the many miles of cables and relays that keep the system running. In addition to the core signal infrastructure, our signal system also includes the flashers and gates at grade crossings and other field infrastructure that alert train crews to potential problems.

Investment needs

Most of our signal systems were installed in the 1980s and early 1990s. These systems have exceeded their typical lifespan of 30 years and are obsolete, with many replacement parts no longer available from manufacturers. On the Hudson Line, 93% of the signal system is in need of replacement, and on the Harlem Line, 52% needs replacement.

6. Centralized Train Control (CTC) allows us to monitor and control the movement of trains across our network from one central location.
7. The Supervisory Control and Data Acquisition (SCADA) system controls the flow of power from substations to the third rail and overhead lines on the Harlem, Hudson, and New Haven lines.
8. Positive Train Control (PTC) is an integrated command, control, and communication system that adds an additional layer of safety protection for trains and workers on our tracks.
Metro-North was formed through the consolidation of different railroads that have different systems to power their trains. As a result, we must maintain two power systems, each with their own track infrastructure, substations, transformers and other system specific assets.

Power

Traction power provides the electricity required to propel trains. It is delivered through a complex network consisting of substations—which convert electricity from the power grid into the appropriate voltage and current for our trains—distribution systems, and the DC third rail and overhead AC catenary wire from which the trains draw power. Some of our equipment, such as the signal system and the Harlem River Lift Bridge, require additional power and substations.

Inventory and status

<table>
<thead>
<tr>
<th>Asset</th>
<th>Total</th>
<th>Percent in Poor/Marginal Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Third Rail Components (brackets, connectors, insulators, snow melters, etc.)</td>
<td>291,065</td>
<td>100%</td>
</tr>
<tr>
<td>Third Rail Linear Assets (rail)</td>
<td>308 miles</td>
<td>100%</td>
</tr>
<tr>
<td>DC Substations</td>
<td>55</td>
<td>89%</td>
</tr>
<tr>
<td>DC Circuit Breaker Houses</td>
<td>3</td>
<td>33%</td>
</tr>
<tr>
<td>DC Substation Auxiliary</td>
<td>50 sets</td>
<td>0%</td>
</tr>
<tr>
<td>AC Substations</td>
<td>6</td>
<td>83%</td>
</tr>
<tr>
<td>AC Substation Assets (switches, transformers, supply stations)</td>
<td>20</td>
<td>96%</td>
</tr>
<tr>
<td>Signal Power Substations</td>
<td>6</td>
<td>33%</td>
</tr>
<tr>
<td>Signal Power Assets (transformers, switches, back-up generators)</td>
<td>301</td>
<td>100%</td>
</tr>
<tr>
<td>Signal Power Cable</td>
<td>186 miles</td>
<td>100%</td>
</tr>
<tr>
<td>Cable Linear Assets</td>
<td>567 miles</td>
<td>100%</td>
</tr>
<tr>
<td>Cable Plant Catenary Poles</td>
<td>245</td>
<td>100%</td>
</tr>
<tr>
<td>Catenary</td>
<td>36 miles</td>
<td>100%</td>
</tr>
<tr>
<td>Catenary Plant Assets (pulleys, balance assemblies, etc.)</td>
<td>1,935</td>
<td>100%</td>
</tr>
<tr>
<td>Transmission Bare Overhead Feeders (15kV)</td>
<td>18 miles</td>
<td>100%</td>
</tr>
<tr>
<td>Transmission Assets</td>
<td>692</td>
<td>96%</td>
</tr>
<tr>
<td>Transmission Wood Poles</td>
<td>1,400</td>
<td>79%</td>
</tr>
<tr>
<td>Harlem River Lift Bridge Plant (control systems, motors, drives)</td>
<td>17</td>
<td>0%</td>
</tr>
<tr>
<td>Stand-by Power Assets</td>
<td>66</td>
<td>100%</td>
</tr>
</tbody>
</table>
| Passenger Station Lighting Assets | 1,500 | 100%

The New Haven Line north of Pelham is powered by Alternating Current (AC).

South of Pelham, the line is powered by Direct Current (DC) third rail.
Investment needs

Our traction power system is critical to Metro-North service, but many assets of our traction power supply system are approaching or have passed their maximum age and require replacement. For example, 88% of our substations have exceeded their expected life. Much of our third rail has not been significantly upgraded since their original installation in the 1980s, and on portions of the New Haven Line, the catenary system is 25-30 years old. New substations are necessary not only to cope with the low-voltage occurrences on the Harlem Line today, but to prepare for greater power needs of newer trains expected in the years to come. Other improvements, such as the electrification of Track 1 on the lower Hudson Line, will focus on operational flexibility to help ensure service recovery is expedited when outages occur.

Over the next 20 years, we need to:

- Improve the Harlem Line traction power supply network with the addition of new substations at eight Upper Harlem locations and at Claremont in the Bronx, one of our most critical locations in need of improvements to properly support all three Metro-North lines.
- Replace temporary substations with permanent ones on the Harlem Line at Mt. Vernon West and Bronxville.
- New substations will be more reliable and weather-resistant, with up-to-date equipment and technology.
- Improve the power supply capacity and resilience of the AC traction power supply system on the New York state portion of the New Haven Line, with the replacement of two AC traction substations (61 at Shell and 193 at Rye).
- Replace aging power substation feeder distribution systems between certain substations to reliably support current and future operations.
- Commence a replacement program to replace existing steel rail with aluminum third rail, which provides better electrical conductivity and performance. The DC third rail system is over 300 miles long and has not been significantly upgraded since installation in the 1980s.
- Improve service reliability through the replacement of deteriorating Harlem Line Transmission Wood Poles.
- Continue substation major component replacement program to extend life of aged substations until their replacement.
- Make signal power improvements to include replacing transformers, replacing motor alternators in signal substations, and upgrading signal feeders including the installation of a second Upper Harlem signal feeder for redundancy.
- Replace contact wire and catenary components on the New Haven Line and lighting systems at eight passenger stations.
- Upgrade and replace assets to address climate resilience strategies, including hardening assets that are most prone to repeat climate hazard exposure and asset elevation for those that are susceptible to water inundation from storm events.
Communication infrastructure

Metro-North’s communication systems play a vital role in the safe operation of our network. Our rail traffic controllers, train crews, and station personnel rely on a flow of information to keep the system moving—and to keep our customers informed. Our communication system supports several other systems that are critical to Metro-North’s operations, including the power system (e.g., remote control of power systems) and fare collection (e.g., data collection from TVMs). Major elements of the communication systems include radio and telephone systems, fire alarms, and security systems (e.g., CCTV cameras, access systems, and intrusion detection systems), all of which are connected by approximately 300 linear miles of fiber optic cables. In addition to communication between controllers, train crews, and customers, these interconnected technologies ensure police, fire, and other emergency personnel can respond rapidly to incidents.

Investment needs

Our long-term objective is to replace aging systems with the latest technology to meet current and future operational and agency needs. Over the next 20 years, we need to:

- Continue to move our communication systems from the obsolete Synchronous Optical Network (SONET) to an Ethernet-based Dense Wave Division Multiplexing (DWDM) system. The systemwide ethernet migration includes ethernet/IP capable head-ends, ethernet/IP capable field assets, and new fiber optic links to field assets.
 - This new DWDM system will support a wide range of Metro-North infrastructure—including telephone services, radio systems, CTC/signal, SCADA, PA/VIS, fare collection, and enhanced security services.
 - This will support capacity demands for projects such as security system upgrades and passenger station information upgrades, including Project CSI.
 - This upgraded system will also help us provide improved customer communication, including real-time train information and better PA communication.
- Continue to replace communication elements beyond their typical lifespan on a cyclical basis.
- Replace our current radio and PA systems—which age makes replacement parts difficult to find—with more reliable communications for our customers and employees, including rail traffic controllers.
 - In accordance with regulatory requirements, our telephone systems and voice recorders will need to be upgraded over the next 20 years.
- Prioritize investments that protect communication infrastructure assets from climate hazards, including flooding, which may include asset elevation and/or hardening, as well as future impacts and risks to communication assets from prolonged extreme heat.
Overview of agency and assets

MTA Bridges and Tunnels (B&T) was established in 1933 as the Triborough Bridge Authority. Today, B&T is among the largest of the nation’s bridge and tunnel tolling authorities, in terms of both revenue and traffic volume, operating seven bridges and two tunnels in New York City, connecting the boroughs of Manhattan, Brooklyn, Queens, the Bronx, and Staten Island. In 2022, B&T collected more than $2.3 billion in revenue. With over 60% of this toll revenue dedicated to the MTA’s mass transit operations, B&T performs a unique and vital function in support of regional mobility.

B&T operates seven bridges:
- Bronx-Whitestone Bridge
- Robert F. Kennedy Bridge
- Throgs Neck Bridge
- Verrazzano-Narrows Bridge
- Henry Hudson Bridge
- Cross Bay Bridge
- Marine Parkway Bridge

B&T also operates two tunnels:
- Hugh L. Carey Tunnel
- Queens Midtown Tunnel

These facilities are essential links for both regional traffic corridors and major truck routes and serve a vital role in the operation of bus/high occupancy vehicle (HOV) traffic operations within NYC.

By the end of this 20-year planning horizon in 2044, all but the Cross Bay Bridge will be over 75 years old, and several facilities will be over 100 years old. As a result of a planned sequence of steady capital investments complemented by a robust operating program of major maintenance work, B&T’s facilities are in overall good condition. However, B&T’s facilities continue to age, and as B&T continues to address the remaining infrastructure rehabilitation/replacement needs, a sustained high level of capital investment similar to current levels is necessary to maintain the facilities in good condition while also improving them to better serve the region. B&T’s investment needs represent a long-term strategy to renew, rebuild, and modernize B&T’s bridges and tunnels with the goals of improving safety, resiliency, regional mobility, and accessibility, while also employing sustainable practices that enhance the environment.

B&T appendix structure

The B&T Appendix provides an overview of the agency’s assets, their current replacement/upgrade status, and expected investment focus to maintain these assets over the next 20 years. The appendix is divided into four sections, including program highlights, specific details about our bridges, specific details about our tunnels, and an overview about our agencywide projects and the Central Business District Tolling Program.
Investment needs highlights

Over the next 20 years, our investment needs include:

- On all bridges and tunnels, continue to replace original structural components to ensure all components remain in good condition, and where new design criteria are applicable for assets being replaced, upgrade them to meet the new criteria.

- On all bridges and tunnel ventilation buildings, upgrade structures where necessary to meet current seismic requirements.

- On all bridges and tunnels, employ sustainable practices during construction such as requiring the use of low carbon concrete and warm mix asphalt, and upgrade our buildings with new energy efficient systems.

- On the Robert F. Kennedy Bridge, replace the elevated Manhattan Plaza structure (former toll plaza area).

- On the Verrazzano-Narrows Bridge, replace the lower-level suspended span deck.

- Implement major safety improvements on the Queens Midtown Tunnel and the Hugh L. Carey Tunnel by installing in-tunnel fixed fire suppression systems (water mist systems).

- On the Bronx-Whitestone Bridge and the Throgs Neck Bridge, dehumidify the main cables.

- Continue to improve bicycle and fully accessible pedestrian paths on our bridges.
Bridges
- Bronx-Whitestone Bridge
- Robert F. Kennedy Bridge
- Throgs Neck Bridge
- Verrazzano-Narrows Bridge
- Henry Hudson Bridge
- Cross Bay Bridge
- Marine Parkway Bridge

Tunnels
- Hugh L. Carey Tunnel
- Queens Midtown Tunnel

Agencywide Projects and Central Business District Tolling Program
Extension of service life for suspension bridges

Main cables are the primary load-carrying elements for our suspension bridges (Throgs Neck Bridge, Bronx-Whitestone Bridge, Verrazzano-Narrows Bridge, and Robert F. Kennedy Bridge suspended spans). The main cables at the Bronx-Whitestone Bridge and Robert F. Kennedy Bridge are well over 80 years old, and the main cables at the Verrazzano-Narrows and Throgs Neck Bridges are already over 60 years old. Main cables are extremely difficult and cost-prohibitive to replace and therefore are critical elements that must be preserved and maintained. As with any cable on an older suspension bridge, main cable strength is reduced from its original new condition by various factors including corrosion. Cable dehumidification is a proven technique used around the world to minimize corrosion and preserve these critical elements.

We have already initiated installation of cable dehumidification on the Robert F. Kennedy Bridge and the Verrazzano-Narrows Bridge in the 2020-2024 program and will be prioritizing this investment at the Bronx-Whitestone Bridge and Throgs Neck Bridge in the next program.

Implementation of Open Road Tolling and Central Business District Tolling

The implementation of Open Road Tolling (ORT) at all MTA B&T facilities in 2017 was a key component of the New York Crossings Project that aimed at reimagining New York’s bridges and tunnels for the 21st century. ORT is providing significant and sustained regional improvements in customer service and customer safety and also has environmental benefits — less traffic congestion for motorists also means cleaner air for everyone, and reducing traffic merging and the need to slow down to pay a toll improves safety for B&T customers. In 2019, legislation was signed into law enabling B&T to implement the Central Business District Tolling Program (CBDTP) to reduce congestion and enhance mobility in Manhattan’s Central Business District (south of, and inclusive of, 60th Street). The planning, design, construction, operations, and maintenance of CBDTP is primarily the responsibility of B&T and requires the involvement of New York State Department of Transportation (NYSDOT), New York City Department of Transportation (NYCDOT), and various other regional agencies and stakeholders. Once activated, this program is anticipated to collect annual net revenue sufficient to generate $15 billion for the MTA capital plan.

Over the next 20 years, as toll collection technology improves, we will need to periodically renew the infrastructure required both to support toll collection at the facilities and to support the CBDTP.
Fire safety upgrades

Over recent capital programs, B&T has made significant progress in upgrading our facilities to modern fire safety standards (NFPA 502) adding fire standpipes on bridges that were originally constructed without them, replacing our tunnel standpipes to modern standards and installing supplemental systems to improve fire fighting resiliency on our suspension bridges. At the Hugh L. Carey Tunnel we have installed a fixed fire suppression system in a portion of the tunnel to further enhance fire fighting capabilities. Going forward we plan to complete the remaining elements of this program and bring all facilities into compliance with modern fire safety standards as well as completing the installation of fixed fire suppression systems at the remainder of the Hugh L. Carey Tunnel as well as the Queens Midtown Tunnel.

We will complete the installation of a fixed fire suppression system in both the Hugh L. Carey Tunnel and the Queens Midtown Tunnel as a top priority in the next program.

Resilience initiatives

In previous programs, as well as the current program, B&T has made significant investments in climate resilience by improving the aerodynamic and wind performance of all four suspension bridges, replacing and/ or installing fender protection systems at the Cross Bay Bridge, Marine Parkway Bridge, Bronx-Whitestone Bridge, Robert F. Kennedy Bridge, and Throgs Neck Bridge to protect critical assets against marine vessel collision, installing measures to prevent erosion of soil around bridge piers and abutments due to the water flow (known as scour) at the Throgs Neck Bridge, Cross Bay Bridge and Marine Parkway Bridge, and installing flood mitigation measures at various facilities. In addition, as part of major deck or structural rehabilitation and replacement projects, seismic upgrades have been performed to bring many of the structures into compliance with current seismic codes. Over the next 20 years we will continue to improve seismic resiliency of both our bridge structures and our tunnel ventilation buildings which are critical structures that house life safety systems for the tunnels. We have also improved electrical resiliency at the majority of our facilities to ensure adequate backup power is available for critical systems, and will complete replacement of all remaining original substations within the next ten years.

Sustainability initiatives

Over the past several programs, B&T has included sustainability initiatives as part of its projects wherever possible, resulting in approximately 95% of facility lighting being upgraded to more energy-efficient LED lights. We have also made wetland protection/enhancements at the Bronx-Whitestone Bridge and Robert F. Kennedy Bridge and replaced old, inefficient HVAC systems with new, properly sized, and efficient systems at several facilities. In keeping with the Governor’s Executive Order 22 on sustainability and decarbonization, B&T is requiring the use of low carbon concrete, as well as the use of other innovative materials such as warm mix asphalt, on current and upcoming projects to minimize the carbon footprint of the projects. B&T is committed to investing in sustainability and is partnering with the New York Power Authority (NYPA) to identify further potential energy savings, evaluate the potential for solar power generation at our facilities, and transition to the use of zero-emission vehicles. In addition, B&T is developing a pilot program to implement EV charging at the Battery Parking Garage with the ability to expand the number of charging stations as demand grows.
Over the next 20 years, B&T will continue to improve bicycle and pedestrian access on its facilities.

Verrazzano-Narrows Bridge. At the Robert F. Kennedy Bridge, B&T constructed a new ramp connecting the Harlem River Lift Span directly to the northbound Harlem River Drive, which has reduced congestion on both the bridge and local city streets in Harlem. At the Bronx-Whitestone Bridge, B&T reconfigured the southbound Queens interchange, creating a shared exit lane to the Cross Island Parkway, which helped minimize last-minute weaving movements and improved customer safety.

In the current program, B&T is improving the Verrazzano-Narrows Bridge and Belt Parkway merge to eliminate a lane drop, and reconfiguring the upper-level Brooklyn Approaches to eliminate non-standard left-hand exits to the Belt Parkway, both of which will greatly improve traffic flow and customer safety on the bridge. At the Robert F. Kennedy Bridge, B&T is improving the southbound Franklin D. Roosevelt (FDR) Drive by eliminating the lane drop where the bridge ramp merges with the southbound FDR, further reducing congestion on the bridge while also improving traffic flow on the FDR. Moving forward, B&T will continue to evaluate its facilities for additional improvements in coordination with its regional partners.

In addition to improving regional vehicular mobility, B&T is committed to improving bicycle and pedestrian access at its facilities wherever possible. Improvements have already been made at the Hugh L. Carey Tunnel by replacing the Morris Street pedestrian bridge over the Manhattan plaza with a new ADA accessible bridge and improving bicycle lanes and pedestrian crossings at Lily Pond Avenue on Staten Island near the Verrazzano-Narrows Bridge. Significant accessibility improvements are also underway on the pedestrian walkways at the Robert F. Kennedy Bridge, the Henry Hudson Bridge and the Cross Bay Bridge. Additional bicycle/pedestrian accessibility improvements are being evaluated for the Robert F. Kennedy Bridge's Harlem River Lift Span and the south side of the Queens Suspension Span, as well as the Marine Parkway Bridge and the Verrazzano-Narrows Bridge.

B&T’s bridges are utilized by thousands of trucks everyday, of which up to eight percent are overweight. Overweight trucks inflict severe fatigue damage to B&T’s infrastructure, which drastically reduces the service life of decks and supporting steel members, and could lead to replacement of these components much sooner than planned. New York State recently passed legislation that will allow overweight trucks to be issued violations and fines as deterrence on a segment of the Brooklyn-Queens Expressway, using data from weigh-in-motion (WIM) systems as a basis for enforcement. B&T is planning to utilize WIM for enforcement and is adding additional WIM systems, upgrading existing WIM systems to be enforcement capable, and coordinating with regional transportation partners to develop a consistent regional approach to this issue.

Overweight vehicle issues and impacts

Regional mobility and accessibility

Investments over the past two programs have resulted in major improvements to community and regional mobility and access. Recent roadway projects at the Verrazzano-Narrows Bridge, in coordination with off-property improvements on the Gowanus and Staten Island Expressways, resulted in the completion of a transformative, continuous reversible bus/HOV lane connecting Staten Island to Manhattan via the Gowanus bus/HOV lane. Taken in conjunction with the implementation of ORT, this project significantly improved travel times during peak hours. In addition, B&T widened the at-grade Gowanus Expressway to eliminate a pinch point where two lanes merged into one (called a lane drop) and improved traffic flow on the lower level of the
Investment categories

Structures
Investments in this category generally address components of the superstructure or the substructure that supports the superstructure. Over the next 20 years, B&T will address the remaining backlog of major capital renewal needs, primarily at the Robert F. Kennedy Bridge, Throgs Neck Bridge, and the Verrazzano-Narrows Bridge, as well as potential structural upgrades to enhance bicycle and pedestrian mobility at several facilities.

Roadways and decks
Investments in this category rehabilitate the bridge and tunnel roadways, decks, approaches, and drainage systems. Over the next 20 years, B&T will address the remaining deck replacement needs, the largest of which is the replacement of the Verrazzano-Narrows Bridge lower-level suspended span deck. After the completion of the deck projects included in this 20-year period, all of our bridge structures will have received new decks, with the exception of the Throgs Neck Bridge Approaches.

Utilities
Investments in this category include the replacement, rehabilitation, or upgrade of mechanical, electrical, and lighting systems; installation of dehumidification systems on suspension bridge main cables; and replacement of tunnel ventilation equipment. B&T’s largest investments are in main cable dehumidification at the Bronx-Whitestone Bridge and the Throgs Neck Bridge and in fire suppression systems at our two tunnels, all within the next capital program. B&T will also be completing its power resiliency/ redundancy upgrades with the replacement of the primary 13 KV substation and anchorage substations at the Robert F. Kennedy Bridge, as well as the replacement of the substations at the Throgs Neck Bridge. In addition, B&T is committed to implementing sustainability initiatives such as transitioning to a zero-emissions fleet, installation of solar power generation, systems upgrades to improve energy efficiency, and other green initiatives as they are identified in partnership with New York Power Authority.

Buildings and sites
Investments in this category include service buildings, ventilation buildings, and garages which are associated with the various bridges and tunnels. B&T’s primary investments in this category are the structural/seismic rehabilitation of the ventilation buildings at the Queens Midtown and Hugh L. Carey tunnels. B&T is also focusing on space repurposing and site improvements in response to operational changes that have resulted from the implementation of ORT, as well as upgrades to the Battery Parking Garage to ensure it remains in good condition.

Miscellaneous
This category reflects anticipated needs associated with the support and administration of capital work including program contingency, program administration, protective liability coverage, independent engineering, scope development efforts, miscellaneous studies, etc.

Structural painting
Investments in this category address structural painting, a vital ongoing activity that helps prevent corrosion of bridge steel. Work in this category is typically bundled with structural rehabilitation projects to maximize cost effectiveness and minimize customer impacts. With the completion of projects in the current program, the overwhelming majority of B&T’s structures will have had their original lead-based coatings replaced, an important safety and environmental goal. The majority of B&T’s investments over the next 20 years involve cyclical maintenance and repair of the bridge coatings.

Transportation Systems Management Operations
This category focuses on investments in operational technologies that can improve the efficiency, safety, and utility of existing infrastructure. Some of these systems, many of which are integrated with those of B&T’s regional transportation partners, collect data that impact travel, like weather information or travel time information, or provide transportation-related information to our staff or customers, allowing them to respond better to current conditions. In addition, investments in this category address necessary upgrades to, or expansions of, B&T security systems, as well as renewal of B&T’s ORT and CBDTP systems, which maximize throughput and revenue generation. Over the next 20 years, B&T will continue to upgrade its systems with the most up-to-date technology to enhance customer safety and experience and to protect the revenue stream.

Over the next 20 years, B&T will continue to upgrade its systems with the most up-to-date technology to enhance customer safety and experience and to protect the revenue stream.
Key program highlights

Bridges

- Bronx-Whitestone Bridge
- Robert F. Kennedy Bridge
- Throgs Neck Bridge
- Verrazzano-Narrows Bridge
- Henry Hudson Bridge
- Cross Bay Bridge
- Marine Parkway Bridge

Tunnels

- Hugh L. Carey Tunnel
- Queens Midtown Tunnel

Agencywide Projects and Central Business District Tolling Program
Bronx-Whitestone Bridge

Bridge facility

The Bronx-Whitestone Bridge is one of our oldest bridges and one of two B&T suspension bridges connecting upper Queens with the Bronx. It is a critical link and vital artery in the regional network. Along with the Throgs Neck Bridge, the Bronx-Whitestone Bridge serves as a key link to Long Island. It has a single level that carries six lanes of traffic, supporting almost 50.9 million vehicle trips in 2022.

Current status

To date, Bronx-Whitestone Bridge capital investments have focused on replacement and rehabilitation of the bridge’s primary structural elements and upgrades to the electrical and communication systems. As a result of investments to date, the Bronx and Queens approach structures have been replaced in their entirety. In addition, we replaced the heavy concrete deck on the suspended span with a lighter steel deck, removed the heavy stiffening truss from the suspended spans and installed a lightweight wind fairing system to improve the wind performance of the suspended spans, all of which significantly reduced the dead load on the main cables. In conjunction with these major structural improvements, the electrical and communication systems on the bridge have been replaced.

In addition, resiliency and security needs have been addressed with a fire standpipe system installed on the structure, expansion and upgrades of the electronic security systems, the installation of protection on main cables and suspender ropes, and construction of fenders to protect the towers from marine impacts. We are currently implementing power and resiliency upgrades, as well as performing structural repairs to the remaining original structural components.

Investment needs

Our investment strategy for the Bronx-Whitestone Bridge over the next 20 years focuses on maintaining the structures and associated buildings in good condition while preserving the main cables. Our top priority in the next capital program is the dehumidification of the main cables, along with installation of a safety fence on the suspended spans. Another high priority is the replacement of the under-deck traveler, which provides access to support under-deck inspections and maintenance. The remaining investments over the 20-year planning horizon include replacing the suspender ropes which will be almost 100 years old, as well as cyclical structural repair projects, periodic rehabilitation of the bridge anchorages, bridge deck overlays, and painting projects all aimed at maintaining the Bronx-Whitestone Bridge in good condition.
Robert F. Kennedy Bridge

Bridge facility

B&T’s flagship facility, the Robert F. Kennedy Bridge (formerly the Triborough Bridge), is comprised of three bridges—the Queens suspension bridge, the Harlem River Lift Span (HRLS), and the Bronx Truss—plus elevated viaducts and approach roads that connect Manhattan, Queens, and the Bronx. The three main branches meet on Randall’s Island, where an elevated interchange supports traffic flowing in 12 directions, including to Randall’s Island. Over 65.2 million vehicles crossed the Robert F. Kennedy Bridge in 2022.

Current status

After completion of the projects in the current 2020-2024 program, the majority of the decks will have been replaced and the superstructure supporting the decks will have been rehabilitated and upgraded to meet current load and seismic criteria. In addition, suspender ropes on the Queens suspension bridge have been replaced and, as part of an upcoming 2020-2024 project, the Queens suspension bridge will have improved wind resiliency and the main cables will be dehumidified. On the Harlem River Lift Span, the mechanical and electrical systems have been replaced or upgraded. A new vehicular ramp connecting the Harlem River Lift Span directly to the northbound Harlem River Drive was recently constructed, greatly improving regional mobility along with significant community benefits such as reduced traffic on local roadways and improved air quality. Two new vehicle ramps to Randall’s Island are currently under construction. Additional investments in regional mobility will be completed under the 2020-2024 program with the widening a section of the FDR south of the Robert F. Kennedy Bridge, which will improve traffic flow on both the southbound Harlem River Drive and the bridge.

Significant improvements to bicycle and pedestrian access are also underway as part of the current capital program including shared use paths connecting Queens to Randall’s Island, the Bronx Truss to Randall’s Island, and the Harlem River Lift Span to both the future Manhattan Greenway and Randall’s Island. In addition, resiliency and security needs have been addressed with investments in fire standpipe systems on the majority of the structures, expansion and upgrades of the electronic security systems, the installation of protection on the main cables and suspender ropes, replacement of the fenders protecting the Harlem River Lift Span towers against marine vessel impacts, installation of safety fencing on the suspended spans, and the replacement and upgrade of several substations servicing the Randall’s Island complex and ORT systems.

Investment needs

Our investment strategy at the Robert F. Kennedy Bridge over the next 20 years focuses on the continued rehabilitation or replacement of the remaining original roadways in the bridge complex, while also addressing the remaining needs of the supporting assets such as utilities and buildings and continuing to improve accessibility. Our highest priority over the next several programs is the reconstruction of the remaining original roadways, including the Manhattan toll plaza structure and associated ramps, and the FDR ramp. These projects will complete the replacement of all the original 1930s-era roadways at the bridge facility. At the same time, we will focus on a multi-phase substructure retrofit to extend the life of the substructure and improve seismic resiliency of this critical facility.

The bridge also has utility components, as well as buildings, that need to be addressed. The relocation and replacement of its primary 13 KV substation in the next capital program, along with subsequent upgrades to the substations in the anchorages will complete its power resiliency upgrades. In addition, as the center of operations for B&T, the Robert F. Kennedy Bridge facility building and storage space must be upgraded, repurposed, or expanded to accommodate operational changes.

We will continue to construct additional bicycle and pedestrian access where feasible, and continue to work with both NYCDOT and NYSDOT to improve regional mobility where possible. A priority project will be to construct a shared use path on the Harlem River Lift Span, making the Manhattan to Randall’s Island connection a fully ADA compliant shared use path from end to end. We are assessing options for improving the Bronx to Robert F. Kennedy Bridge interchange to address traffic safety, while also improving regional mobility and bicycle/pedestrian accessibility. The remaining investments over the 20-year planning horizon include cyclical structural repair projects, bridge deck overlays, and painting projects all aimed at maintaining the Robert F. Kennedy Bridge in good condition.

Robert F. Kennedy Bridge Facility 2022

Major asset categories include roadways and decks, structures, utilities, and buildings. A significant portion of the assets under the utilities and buildings categories, which still require upgrade or replacement, are being addressed under projects currently ongoing in the 2020-2024 program.
Throgs Neck Bridge

Bridge facility

The Throgs Neck Bridge crosses the East River, connecting the boroughs of Queens and the Bronx via Interstate 295. This bridge is situated in deep water, with one anchorage and both towers constructed on foundations within the river and exceptionally long approach spans. The bridge carries three lanes in each direction as part of Interstate 295, and it has the highest percentage of truck traffic of all B&T facilities. Currently, due to the fact that the structure supporting the right-hand lane on the original approach viaducts cannot carry the heavy truck loads so common today, trucks are restricted to the middle lane while crossing the bridge. In 2022, the Throgs Neck Bridge carried over 39.6 million vehicles.

Master planning of Throgs Neck Bridge projects are carried out in careful coordination with planning at the Bronx-Whitestone Bridge, as these two bridges serve a common transportation corridor. Several studies of the Throgs Neck Bridge corridor and Bronx-Whitestone Bridge performed during previous capital programs have evaluated various means of reducing traffic congestion and improving safety, interoperability, and resiliency of both bridges. The recommended strategy that is most feasible is to plan for the possible future reconfiguration of the Throgs Neck Bridge to a seven-lane bridge similar to the reconfiguration of the Verrazzano-Narrows Bridge upper level. The need for the seventh lane could be triggered by traffic growth and/or the need to add additional capacity for an HOV lane. Adding a seventh lane across the bridge requires the replacement of the very long approach structures. Consequently, Throgs Neck Bridge capital investments over the past several programs and those included in the proposed 20-Year Needs Assessment have been aligned so as to allow for the potential implementation of a seventh lane as part of a future replacement of the approach structures.

Current status

Previous investments have focused on rehabilitation of the bridge's superstructure (e.g. roadway decks and supporting steel structures) and primary structural elements. The heavy concrete deck on the suspended spans was replaced with a lighter steel deck which reduced the dead load on the main cables. In addition, the lower half of the Queens Approach has been rehabilitated with a new deck along with substructure strengthening and seismic retrofits. Both the suspended spans and the rehabilitated portion of the Queens Approach are designed to accommodate a future seventh lane on the Throgs Neck Bridge. Extensive steel repairs and drainage improvements, as well as seismic retrofits to the superstructure, have been carried out on the Queens and Bronx Approach structures. In conjunction with these major structural improvements, we have replaced the roadway lighting as well as electrical and communication conduits and wiring on the bridge structure. In addition, resiliency and security needs have been addressed with fire standpipe systems installed on the structures, expansion and upgrades of the electronic security systems, and the installation of protection on the main cables and suspender ropes. As part of a major investment in the current capital program, we will replace the fenders that protect the bridge towers, paint the towers, and rehabilitate the tower elevators.

Investment needs

By the end of this 20-year planning horizon, the Throgs Neck Bridge will be over 80 years old. Our investment strategy over the next 20 years focuses on maintaining the structures and associated buildings in good condition, continuing to replace original components as needed, improving resiliency, and preserving the main cables. Our top priorities in the next capital program are the dehumidification of the main cables along with installation of a safety fence on the bridge, power redundancy and resiliency upgrades for all substations servicing the facility, and repairs to the concrete piers supporting the approach structures. Major investments in following programs include reconstruction of the on-bound Cross Island Parkway ramp to improve access to the Throgs Neck Bridge and address flooding issues where the ramp connects with the Cross Island Parkway, as well as replacement of the suspender ropes which will be over 80 years old.

In addition, we will begin design for the full replacement of the approaches to not only allow trucks to return to the right lane but also to allow for the potential creation of a seventh lane end-to-end on the bridge. We are also evaluating the possibility of improving interoperability between the Throgs Neck Bridge and the Bronx-Whitestone Bridge by eliminating the constraints that limit traffic flow between the two bridges, which would in turn, allow better use of the two crossings by bus/HOV traffic while also improving regional transportation resiliency. The remaining investments over the 20-year planning horizon include cyclical structural repair projects, periodic rehabilitation of the bridge anchorages, bridge deck overlays, and painting projects all aimed at maintaining the Throgs Neck Bridge in good condition.
Verrazzano-Narrows Bridge

Opened to traffic in 1964, the Verrazzano-Narrows Bridge, connecting Brooklyn and Staten Island, is the newest of B&T’s suspension bridges. It is a double decked suspension bridge and the longest suspended span in North America. It is also the only link connecting Brooklyn with Staten Island across New York Bay. The Verrazzano-Narrows Bridge serves as a critical transit link in the region between Brooklyn, Manhattan, and Staten Island, with 970 express buses and 677 local buses carrying 36,000 passengers across the bridge each weekday. It carried over 78.2 million vehicles in 2022 and is also a major truck route.

Current status

Given the Verrazzano-Narrows Bridge’s status as a critical link in the regional transportation corridor, a significant portion of our investments have been carefully coordinated with NYS DOT’s investments on the Staten Island and Gowanus Expressways with the ultimate goal of providing continuous bus/HOV service across the Verrazzano-Narrows Bridge.

A series of major investments were implemented over several past programs which included the reconfiguration of the eastbound toll plaza to facilitate bus/HOV access, and the replacement and reconfiguration of the upper-level suspended span deck to meet current loads, improve wind resilience, and provide a reversible bus/HOV peak-travel lane. on the upper level of the suspended spans. These improvements, along with the construction of a new bus/HOV ramp on the Brooklyn Approach and the reconstruction of the Gowanus Expressway connection, resulted in continuous bus/HOV access from Staten Island to Manhattan servicing the express bus network in this transportation corridor.

In addition, we have been improving Verrazzano-Narrows Bridge traffic flow and safety by constructing improvements to the connecting highways on either end of the bridge to facilitate traffic exiting the bridge. Under a major investment in the current capital program, we are reconstructing and reconfiguring the Brooklyn approaches to eliminate substandard left-hand exits to the Belt Parkway.

In the current capital program, we are reconstructing and reconfiguring the Brooklyn approaches to eliminate substandard left-hand exits to the Belt Parkway.

Not only do these projects improve traffic safety and flow, they also facilitate the eventual replacement of the lower-level suspended span deck in a future program. In conjunction with these major structural improvements, the majority of the Verrazzano-Narrows Bridge electrical and communication systems have been replaced.

We have also addressed safety, resiliency, and security needs with the installation of safety fences on the suspended spans, replacement of substations and improvement of electrical power backup, installation of electronic security systems, and the installation of protection on the main cables and suspender ropes. A high priority project in the current program is the dehumidification of the main cables to preserve these critical assets.

Investment needs

By the end of this 20-year planning horizon, the Verrazzano-Narrows Bridge will be over 80 years old. Our investment strategy over the next 20 years focuses on continued rehabilitation or replacement of the remaining original portions of the bridge complex, while also addressing the supporting assets such as utilities and buildings.

Our highest priority in the next 20 years is the replacement of the lower-level suspended span deck, along with the fire standpipe system and the under-deck travelers that provide access for maintenance and inspection of the suspended spans. In addition, the suspender ropes will be almost 80 years old and will be replaced, and, if deemed feasible, a bicycle/ pedestrian path may be added on the bridge. Other priorities include expanding the electronic security system at the Verrazzano-Narrows Bridge facility and addressing building and site space needs to accommodate operational changes.

The remaining investments over the 20-year planning horizon include cyclical structural repair projects, cyclical rehabilitation of bridge roadways, cyclical substation upgrades, bridge deck overlays, and painting projects all aimed at maintaining the Verrazzano-Narrows Bridge in good condition.

- 20-Year Needs Assessment Appendix 06
- 20-Year Needs Assessment Appendix 04
Henry Hudson Bridge

Bridge facility

The Henry Hudson Bridge is a double-deck steel arch bridge that crosses the Hudson River and connects the northern tip of Manhattan with the Bronx and points north. The lower level carries Manhattan bound traffic, and the upper level carries traffic from Manhattan to the Bronx. There is an existing pedestrian walkway on the lower level of the bridge. Almost 24.9 million vehicles crossed the Henry Hudson Bridge in 2022. In addition to its main structure, two smaller bridges (the Dyckman Street Bridge and the Staff Street Bridge) and the Henry Hudson Parkway south of the bridge are part of the Henry Hudson Bridge facility and are operated and maintained by B&T.

Current status

We have replaced all of the original 1930s-era roadway decks on both levels of the Henry Hudson Bridge, painted and rehabilitated the entire steel supporting structure, and upgraded the majority of the substructure to meet current seismic criteria. In conjunction with these major structural improvements, we have replaced the electrical and communication systems on the bridge and eliminated original supporting columns that obstructed driver sight lines on the lower level and impeded traffic flow on the bridge’s lower level, greatly improving traffic flow and safety. Significant improvements in the bridge’s structural redundancy and longevity have been implemented in a recent major retrofit of the bridge’s substructures. Under an ongoing project in the current capital program, we are addressing resiliency needs with replacement of substations and improved electrical power backup. We are also improving bicycle and pedestrian accessibility by enhancing the existing 1930s-era lower-level walkway on the bridge and constructing new connecting ramps on either side of the bridge to provide a shared use path between Manhattan and the Bronx. With the completion of these investments, the Henry Hudson Bridge should continue to serve the traveling public for many years with regular maintenance and consistent levels of capital investments going forward.

Investment needs

Our primary investment strategy at the Henry Hudson Bridge over the next 20-year timeframe is to continue to maintain the facility in good condition. A top priority in the next capital program is to construct a backup operations control center for B&T to create operational redundancy. Other investments include performing traditional structural and concrete repairs and cyclical deck rehabilitation projects to extend the service life of the decks, as well as upgrading the drainage system on the bridge to facilitate maintenance and minimize future impacts of corrosion to the steel supporting structure. Drainage system improvements will also be made on the Henry Hudson Parkway, and the parkway pavement will be rehabilitated toward the end of the 20-year period. In addition, upgrades will be made as necessary on the Dyckman Street and Staff Street structures to ensure they remain in good condition.
Cross Bay Bridge

Bridge facility

The Cross Bay Bridge (Cross Bay Veterans Memorial Bridge) spans Beach Channel in Jamaica Bay, providing vehicular access from Queens to the Rockaways and area beaches. It was completely reconstructed in 1970 as a high-level fixed bridge with a wide main channel for marine passage. The city of New York’s Department of Emergency Management has designated the entire Rockaway Peninsula as Evacuation Zone 1, which contains the first areas to be evacuated in advance of an approaching coastal storm. The Cross Bay Bridge is therefore a crucial lifeline to the Rockaways. Almost 7.9 million vehicles crossed the bridge in 2022.

Current status

We have focused our Cross Bay Bridge investments primarily on structural rehabilitation work including structural rehabilitation of the ramps, rehabilitation of the concrete substructure, and a major rehabilitation of the superstructure/roadway and drainage system. We have also replaced the fender system that protects the navigation span piers from marine vessel impacts and addressed erosion issues at the span piers. After Superstorm Sandy, we replaced all damaged substations and electrical components and studied whether the Cross Bay Bridge and nearby Marine Parkway Bridge should be replaced due to structural conditions and flooding risks. This study recommended replacement of the Cross Bay Bridge due to the condition of critical components on the navigation spans however, we are implementing an innovative rehabilitation of the bridge’s navigational span to extend the bridge’s life and defer the need for replacement. In addition, we are replacing the existing pedestrian ramp to create an ADA-compliant shared use path across the bridge, which will significantly improve bicycle and pedestrian accessibility.

Cross Bay Bridge Facility 2022

Major asset categories include roadways and decks, structures, utilities, and buildings. A significant portion of structure assets that still require upgrade or replacement are being addressed under projects currently ongoing in the 2020-2024 program.

<table>
<thead>
<tr>
<th>Category</th>
<th>% Good condition</th>
<th>% Needs update/replacement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structures</td>
<td>88%</td>
<td>12%</td>
</tr>
<tr>
<td>Roadways and Decks</td>
<td>93%</td>
<td>7%</td>
</tr>
<tr>
<td>Utilities</td>
<td>91%</td>
<td>9%</td>
</tr>
<tr>
<td>Buildings</td>
<td>70%</td>
<td>30%</td>
</tr>
</tbody>
</table>

Based upon 2022 assessment

Investment needs

Our primary investment strategy at the Cross Bay Bridge over the next 20-year timeframe is to continue to maintain the facility in good condition, performing traditional concrete repairs deferring the need for bridge replacement. In addition, we will address the need for an electronic security system to facilitate operations and address building and space needs to accommodate operational changes.
Marine Parkway Bridge

Bridge facility

The Marine Parkway Bridge (Gil Hodges Memorial Bridge) is a vertical lift bridge with two secondary structures, the Rockaway Point Boulevard Overpass and the Jacob Riis Park Pedestrian Bridge. The close proximity of Jamaica Bay affects the bridge due to the low clearance of its approach spans over the bay’s corrosive salt water, resulting in accelerated deterioration of its coatings and as well as corrosion of the bridge steel. The entire Rockaway Peninsula lies within Evacuation Zone 1, which contains the first areas to be evacuated in advance of an approaching coastal storm. Therefore, like the Cross Bay Bridge, the Marine Parkway Bridge is a crucial lifeline during any storm evacuation. Almost 7.9 million vehicles crossed the bridge in 2022.

Current status

In earlier capital programs, we addressed the original functional deficiencies of the Marine Parkway Bridge, which included narrow lanes and no center median. The deck was replaced and widened to provide two 12-foot lanes in each direction with a new continuous center median and a cantilevered sidewalk for dedicated pedestrian use on the span’s west side. This project also included new lighting and drainage and addressed structural steel repairs. We also have performed extensive steel repairs over several programs, along with an aggressive painting program to protect the steel supporting both the approach spans and the lift bridge. Most recently, we have rehabilitated the lift span electrical and mechanical systems, installed a fire standpipe system on the bridge, replaced the fender system that protects the lift span towers from marine vessel impacts, and addressed erosion issues around bridge abutments and piers. In addition, we rehabilitated the two overpasses in the Rockaways. After Superstorm Sandy, we replaced all damaged substations and electrical components and studied whether the Cross Bay Bridge and Marine Parkway Bridge should be replaced due to structural conditions and flooding risks. This study recommended planning for future replacement of the Marine Parkway Bridge based on its age and load capacity of certain bridge members, however, we recently completed significant painting and steel repairs, and have been able to defer replacement of the bridge.

Investment needs

Our primary investment strategy over the next 20-year timeframe is to continue to maintain the Marine Parkway Bridge in good condition, performing traditional steel repairs and painting and deferred the need for bridge replacement. In addition, during the early part of the 20-year period, we will address the need for an electronic security system to facilitate operations and address building space needs to accommodate operational changes. We will continue cyclical rehabilitation of the electrical and mechanical components of the lift span as necessary. One of the more significant investments in the 20-year timeframe is the replacement of the existing open-grid steel deck on the lift-span, which if feasible, may also include bicycle and pedestrian accessibility improvements. A prototype installation of the proposed open grid steel deck replacement will be installed as part of an ongoing capital project at the Marine Parkway Bridge and Cross Bay Bridge. The results of this prototype will inform future strategies for deck replacement on the Marine Parkway Bridge.
Key program highlights

Bridges
- Bronx-Whitestone Bridge
- Robert F. Kennedy Bridge
- Throgs Neck Bridge
- Verrazzano-Narrows Bridge
- Henry Hudson Bridge
- Cross Bay Bridge
- Marine Parkway Bridge

Tunnels
- Hugh L. Carey Tunnel
- Queens Midtown Tunnel

Agencywide Projects and Central Business District Tolling Program
Hugh L. Carey Tunnel

Tunnel facility

The Hugh L. Carey Tunnel (formerly the Brooklyn-Battery Tunnel), the longest underwater vehicular tunnel in North America, is a twin-tube four-lane vehicular tunnel connecting lower Manhattan and Brooklyn. The facility includes two ventilation buildings in lower Manhattan, a third near the Brooklyn portal, and a fourth at Governor’s Island, along with the Morris Street pedestrian bridge, and Governor’s Island Foot Bridge. The adjacent Battery Parking Garage in Manhattan (the largest self-park garage in Manhattan) is also part of the tunnel facility assets. A critical public transit, private, and commercial vehicle link between Manhattan and Brooklyn, the Hugh L. Carey Tunnel is the terminus of the Gowanus Expressway bus/HOV lane that carries 1,370 express buses with 28,000 riders per weekday from Staten Island and South Brooklyn. During major emergencies, the tunnel also serves as an emergency entry and exit route from lower Manhattan. Almost 21.9 million vehicles traveled through the tunnel in 2022.

Current status

In 1989, B&T embarked on its first ever comprehensive tunnel inspection, which informed the initial capital tunnel projects under which we replaced the exhaust fans, updated and expanded the power distribution systems, and consolidated the tunnel control systems. We also replaced a portion of the tunnel slab ceiling, ceiling tiles, and traffic signals, as well as rehabilitated the roadway slab. In 2012, Superstorm Sandy caused severe damage to the Hugh L. Carey Tunnel and many of its elements that were replaced in earlier programs, requiring a major reconstruction of the tunnel. Work included complete replacement of wall tiles, tunnel ceiling veneer panels, the fire standpipe system to meet National Fire Protection Agency (NFPA) criteria, as well as all systems in the tunnels such as lighting, wayfinding, and electrical. In addition, the drainage pumps were completely replaced. As a result, the majority of the components within the tunnel itself are essentially new, as are the tunnel systems. The Brooklyn Plaza was also rehabilitated and realigned, and flood doors were installed at each plaza to mitigate the possibility of future flooding.

Once the restoration of the tunnel was complete, we focused on upgrades to the life safety systems, including the ventilation system, control center, electrical upgrades at the service building, installation of smoke and fire detection systems at the various tunnel buildings, and installation of a prototype fire-suppression system in a section of the tunnel. Under the current program, the electronic security system is being upgraded and expanded to facilitate tunnel operations.

Investment needs

Our primary investment strategy at the Hugh L. Carey Tunnel over the next 20-year timeframe is to maintain the facility in good condition while continuing to improve life safety systems and upgrade the critical ventilation buildings to meet current seismic criteria. Our top priority in the next capital program is the completion of the fire suppression system installation within the tunnel along with any necessary in-tunnel structural repairs. In addition, we will begin a phased seismic retrofit of the ventilation buildings as well as any necessary structural repairs to the buildings, while also continuing to improve electrical resiliency for critical life safety assets and other upgrades to the ventilation system.

We will also make repairs to the Battery Parking Garage. Pedestrian safety and traffic flow continue to be major issues at the West Street Approaches to the tunnel’s Manhattan Plaza. B&T will assess various pedestrian enhancements to improve pedestrian safety and traffic throughput. The remaining investments over the 20-year planning horizon include cyclical tunnel repairs to address leaks and rehabilitate tunnel walls, ceiling and air ducts, periodic upgrades to tunnel controls, and rehabilitation of the former plaza areas, all aimed at maintaining the tunnel in good condition.
Queens Midtown Tunnel

Tunnel facility

Opened to traffic in 1940, the Queens Midtown Tunnel is a twin tube four-lane vehicular tunnel that connects the Long Island Expressway and Midtown Manhattan. Related structures include two ventilation buildings, one in Queens and one in Manhattan. The Queens Midtown Tunnel facility also includes three roadway Manhattan overpasses in Manhattan at 2nd Avenue, 36th Street, and 37th Street entry, along with four approach and exit streets, three entrance and exit plazas, various parking lots, and the Borden Avenue property adjacent to the service building in Queens. The tunnel is a critical transportation link in the region, serving Queens and Long Island. Out of the average of 84,000 daily vehicles, 480 express buses serve approximately 9,600 passengers from Queens each weekday. During major incidents and emergencies, the tunnel serves as an entry and exit route for Midtown Manhattan. It is also an essential link in the interstate highway network, connecting Interstate 495 to the rest of the country via Midtown Manhattan and the Lincoln Tunnel. Over 29.8 million vehicles traveled through the Queens Midtown Tunnel in 2022.

Current status

Major capital investments in the wake of the first comprehensive tunnel inspection in the 1990s included travel roadway slab rehabilitation; replacement of the traffic control wiring; replacement of the ceiling slab, original ceiling tiles, and lighting; and rehabilitation of the ventilation and pump rooms. We modernized the facility power distribution systems, replaced the exhaust fans, and partially rehabilitated the roadway slab. In addition, we completely rehabilitated the roadway drainage system, including the replacement of all pumps and associated power and controls. We also replaced the 37th Street overpass that provides a connection from 37th Street to the south tube, rehabilitated the 36th Street and 2nd Avenue overpasses, and performed work on several buildings to improve functionality for maintenance and operations.

Superstorm Sandy in 2012 caused severe damage, requiring a major reconstruction of the tunnel. Work included complete replacement of wall tiles, ceiling veneer panels, the fire standpipe system to meet NFPA criteria, as well as all systems in the tunnel such as lighting, wayfinding, and electrical. As a result, the majority of the components within the tunnel are essentially new, as are the tunnel systems. The Queens Plaza was also rehabilitated, and flood doors were installed at each plaza to mitigate the possibility of future flooding. Once the restoration of the tunnel was complete, we focused on upgrades to the life safety systems including the ventilation system, controls center, electrical upgrades at the service building, and installation of smoke and fire detection systems in various tunnel buildings. Under the current program the electronic security system is being upgraded and expanded to facilitate tunnel operations. We are also making improvements to the service building, including relocating the fueling station to outside of the building and electrical equipment to above flood levels.

Investment needs

Our primary investment strategy at the Queens Midtown Tunnel over the next 20-year timeframe is to maintain the facility in good condition while continuing to improve life safety systems and upgrade the critical ventilation buildings to meet current seismic criteria. Our top priority in the next capital program is the installation of the fire suppression system within the tunnel. In addition, we will begin a phased seismic retrofit of the ventilation buildings as well as any necessary structural repairs to the buildings, while also continuing to improve electrical resiliency for critical life safety assets and other upgrades to the ventilation system. Within the tunnel tubes, we will rehabilitate the roadway slab along with the Manhattan tunnel entrance plaza and Queens Plaza. We will also replace the mainly original exhaust ports. The remaining investments over the 20-year planning horizon include cyclical tunnel repairs to address leaks and rehabilitate tunnel walls, ceiling and air ducts, periodic upgrades to tunnel controls, and rehabilitation of the former plaza areas and roadway overpasses, all aimed at maintaining the tunnel in good condition.
Key program highlights

Bridges
- Bronx-Whitestone Bridge
- Robert F. Kennedy Bridge
- Throgs Neck Bridge
- Verrazzano-Narrows Bridge
- Henry Hudson Bridge
- Cross Bay Bridge
- Marine Parkway Bridge

Tunnels
- Hugh L. Carey Tunnel
- Queens Midtown Tunnel
Agencywide projects

Our needs over the next 20 years include programmatic investments at multiple facilities such as tolling projects, intelligent transportation systems (ITS), security systems, and sustainability as well as efforts for the support and administration of the capital programs.

Current status

B&T has been at the forefront of ITS technology implementation since the introduction of E-ZPass in 1997. In 2017, we completely modernized B&T toll collection with the conversion of all conventional tolling facilities to ORT. In addition to advances in tolling, we are keeping pace with the changing technical advances in vehicular travel. In 2018, we opened the B&T Operations Command and Communications Center (OCCC) facility on Randall’s Island, a state-of-the-art command center that allows for improved traffic management at all nine B&T facilities and provides critical transportation services to customers, including travel time advisories and safety alerts. The OCCC has dedicated links to other regional transportation agencies that enable the agency’s regional partners to effectively coordinate their transportation incident management activities with B&T.

Agencywide ITS systems implemented in the recent past include Closed Circuit Television (CCTV) traffic cameras; variable message signs, which disseminate real-time traffic conditions to motorists; travel time information systems such as TRANSMT, which allow us to provide live travel time estimates; vehicle traffic detectors, which can measure speed, volume, occupancy, and vehicle classification, allowing for quicker detection and clearance of incidents; over-height vehicle detection systems; and roadway weather systems, which can plan for resource allocation for weather events, particularly in the winter months. Another important investment in this category has been the installation of weigh-in-motion (WIM) systems at each facility. By the end of the current capital program, all bridge facilities carrying truck traffic will have enforcement ready WIM systems in place.

On the security front, we upgraded and expanded the electronic security systems (ESS) at the Throgs Neck Bridge, Bronx-Whitestone Bridge, and Robert F. Kennedy Bridge, and we are currently upgrading and expanding the ESS at the tunnels. We have made strides toward improving the energy footprint of B&T facilities by replacing approximately 95% of the facility lighting with more energy-efficient LEDs and installing energy-efficient HVAC systems at the tunnel service buildings as well as the Bronx-Whitestone Bridge service building. We are partnering with NYPA to perform energy audits on B&T-owned buildings to identify further potential energy savings, to evaluate B&T-owned properties for installation of solar power generation, and to develop a plan for transitioning to the use of zero emission vehicles.

Investment needs

Our primary investment strategy for agencywide projects over the next 20-year timeframe includes the renewal of our ITS systems, periodic renewals of the ITS toll collection technologies at our ORT tolling locations, installing any necessary infrastructure to support the transition to zero-emission vehicles, and implementing sustainability initiatives including solar power generation and replacement of inefficient building systems. We will also expand the security systems at the Verrazano-Narrows Bridge, as well as plan for security system improvements at the Henry Hudson Bridge, Cross Bay Bridge, and Marine Parkway Bridge. Finally, future programs will need to upgrade WIM systems as necessary to meet the most current performance criteria and allow for coordinated enforcement action against overweight trucks on B&T crossings.

Central Business District Tolling Program

Major investments in the upcoming programs include a series of periodic renewals of its toll collection technologies for the CBDTP system so as to ensure the safe and reliable collection of revenue in the future.
Overview of agency and assets

The MTA Police Department (MTAPD) is responsible for ensuring the safety and security of MTA’s Metro-North Railroad (Metro-North), Long Island Rail Road (LIRR), and Staten Island Railway (SIR) customers, employees, and facilities. Its service area extends across 14 counties in New York and Connecticut.

On January 1, 1998, the MTA consolidated the LIRR and Metro-North police forces under the jurisdiction of the MTAPD. Subsequently, the Staten Island Rapid Transit Police was added to MTAPD on June 1, 2005. Prior to the merger, capital needs at these operating agencies were addressed as part of the respective agency’s capital programs. The MTA Police’s 2025-2044 investment strategy will continue to support its mission of providing safety and security throughout the MTA network and build upon the work in the 2020-2024 Capital Program.

MTA Police Department appendix structure

The MTA Police Department Appendix provides an overview of the agency’s assets, their current condition, and expected investment focus to maintain these assets over the next 20 years. The appendix is divided into three asset categories, and for each, we provide a description of the asset, an inventory count with percent of assets in poor or marginal condition, followed by the agency’s investment needs and priorities. Assets with a rating of 1 (poor) or 2 (marginal) help us identify where we need to focus our investment needs.

1. Poor (Deteriorated): Critically damaged or in need of immediate repair, well past useful life. Assets are operable with extraordinary maintenance, but have serious functional deficiencies. Capital investment in these assets is needed on a priority basis.

2. Marginal (Deficient): Deteriorated, in need of replacement, and may have exceeded useful life. Assets have functional deficiencies. If capital investment is deferred for these assets, added maintenance and operating expenses would be expected.
MTAPD plays a vital role in ensuring customer safety and security across the MTA service area. Its responsibilities are diverse, spanning from Patrol and Detective divisions to specialized units such as Canine and Emergency Services. Teams like T.R.A.C.K.S. provide free community outreach programs to educate people about safety on and near railroad grade crossings and tracks, the Right-Of-Way Task Force actively seeks out security- and safety-related issues affecting the right-of-way of our railroads such as trespassing and illegal dumping. Counter Terrorism also contributes to keeping our comprehensive safety measures in place.

To support these functions, MTAPD operates from over 30 facilities spread across 12 New York counties. We have been consistently updating and improving these facilities to better serve our communities. During the 2015-2019 capital phase, we upgraded locations including Nassau District 2, Staten Island District 9, and the Harriman facility. In the ongoing 2020-2024 phase, we have focused on the Mt. Vernon District Office, 1825 Park Avenue Field Office, and the Grand Central Madison facility. Additionally, to support our canine unit, we have established a state-of-the-art canine training center in Dutchess County.

MTAPD operates from a range of facilities, including leased offices, temporary structures, and spaces shared within existing MTA structures like stations and substations.

Inventory as of 2023

<table>
<thead>
<tr>
<th>Asset</th>
<th>Total</th>
<th>Units</th>
<th>Percent in Poor/Marginal Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building Structure</td>
<td>26</td>
<td>Each</td>
<td>4%</td>
</tr>
<tr>
<td>Elevator</td>
<td>2</td>
<td>Each</td>
<td>0%</td>
</tr>
<tr>
<td>Generator</td>
<td>8</td>
<td>Each</td>
<td>0%</td>
</tr>
<tr>
<td>HVAC</td>
<td>17</td>
<td>Each</td>
<td>0%</td>
</tr>
<tr>
<td>Office</td>
<td>1</td>
<td>Each</td>
<td>0%</td>
</tr>
<tr>
<td>Roof</td>
<td>17</td>
<td>Each</td>
<td>6%</td>
</tr>
<tr>
<td>Other</td>
<td>5</td>
<td>Each</td>
<td>0%</td>
</tr>
</tbody>
</table>

Note: Given the diverse range of facilities MTAPD operates from, component level condition ratings are included only for locations where they are relevant to MTA capital costs, excluding some shared facilities.

Investment needs

MTAPD operates from a range of facilities, including leased offices, temporary structures, and spaces shared within existing MTA structures like stations and substations. However, some of these locations are currently inadequate to meet our growing operational needs. To address this, our primary goal is to optimize the use of our existing spaces and to identify additional locations to support MTAPD’s expansion. We have begun an Architectural Space Optimization Plan to help guide how we prioritize facility projects and provide estimated timelines.

In the coming years, our investment strategy will also focus on maintaining and upgrading our existing facilities. Depending on specific needs, these efforts could range from component updates to comprehensive facility modernizations. We’re also considering a new future headquarters, should the MTA decide to vacate MTAPD space within the Graybar building adjacent to Grand Central Terminal. Additionally, to enhance training capabilities, we’re evaluating the feasibility of establishing an independent shooting range facility to help avoid New York Police Department scheduling constraints and associated fees and to comply with New Department of Criminal Justice Services rules impacting the accreditation process.
We maintain a variety of vehicles to support MTAPD’s work. The following category relates only to specialized vehicles, which are capitally eligible. Patrol cars and other standard vehicles are purchased under the operating budget. We utilize three types of specialized rubber-tire vehicles: six emergency service units (ESUs), a field communication unit, and a mobile command vehicle (MCV). These vehicles are crucial for emergency responses and regular ESU patrols. Officers in these units have special training, allowing them to handle significant incidents that go beyond the capabilities of regular patrol officers and other regional police units.

Inventory as of 2023

<table>
<thead>
<tr>
<th>Asset</th>
<th>Total</th>
<th>Units</th>
<th>Year Built</th>
<th>Useful Life</th>
<th>Remaining Useful Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Communications Unit</td>
<td>1</td>
<td>Each</td>
<td>1989</td>
<td>15 years</td>
<td>-9 years</td>
</tr>
<tr>
<td>Mobile Command Vehicle</td>
<td>1</td>
<td>Each</td>
<td>2006</td>
<td>15 years</td>
<td>-2 years</td>
</tr>
<tr>
<td>Emergency Service Units</td>
<td>4</td>
<td>Each</td>
<td>2016</td>
<td>8 years</td>
<td>1 year</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Each</td>
<td>2017</td>
<td>9 years</td>
<td>2 years</td>
</tr>
</tbody>
</table>

Investment needs

These vehicles are deployed throughout the MTA service region, which includes Metro-North, LIRR, and SIR. In the previous capital program, we retired two ESUs and one MCV. The current program has a project to replace two or three ESUs. The majority of the remaining vehicles will age beyond their useful life horizon before the upcoming capital program.

The long-term goal for this category is to maintain our specialized equipment and to replace remaining units at the end of their useful life while providing technological upgrades where appropriate. This overall investment strategy for police vehicles is consistent with past investment strategies; however, MTAPD will also explore the procurement of one additional MCV and the use of smaller sized field communication vehicles.
The Communications Division plays a crucial role in coordinating our response to both routine and emergency situations affecting transit operations. This division utilizes a range of equipment, including portable radios, base station setups, transmitter sites, and comprehensive Command and Control Communications infrastructure. This setup also includes backup locations and other essential equipment to support seamless communication.

During the 2010-2014 Capital Program, we significantly enhanced our communication capabilities with the introduction of the advanced Command and Control Center (C3). However, the current radio system has limitations, including coverage gaps that can hinder clear communication. To address this, MTAPD has been working on system upgrades, aiming to provide a dependable, interoperable communications system for officers across the region. Funding for this new system has been allocated in three previous capital programs, and we’re now in the construction phase, which includes adding two more radio towers. We have also invested in new portable and mobile radios as part of the ongoing 2020-2024 Capital Program.

Investment needs

The communications investment strategy includes the replacement of communication base station equipment, portable radio systems and equipment, Metropolitan Regional Radio System, enhancement of transmitter sites, and investments in central communications located in Long Island City and the Graybar building. We will make these investments as equipment reaches the end of its useful life as necessary to keep the communications system modernized and up to date with technological advancements.
Comparative Evaluation

Overview of Comparative Evaluation

As we look ahead 20 years, our most urgent priority is to secure the survival of our existing system by rebuilding its most imperiled infrastructure, renewing its outdated and broken parts, and implementing improvements that will deliver more inclusive, safe, and reliable service. Unless sufficient resources are made available to address the existing system’s most urgent needs, there cannot be investment in expansion projects.

Alongside the foundations of rebuilding and improving our existing infrastructure, targeted investments in the expansion of the MTA network will further support the region’s economic growth and prosperity. Our region is forecast to grow by over one million residents and nearly one million jobs in the next 20 years, and travel patterns have, and will continue to, evolve as new business districts and industries emerge. We must prepare our network for new challenges and opportunities in the decades ahead, and we must expand the system in a way that is most beneficial to our riders, and the region.

We must be ready to invest any additional resources into projects that address these challenges most effectively and that will have the greatest regional impact. That is why we have developed the MTA’s first-ever Comparative Evaluation, which weighs the costs and benefits of potential expansion projects to help us make smarter, more strategic choices to secure New York’s future.

Comparative Evaluation is a framework that can guide smart, strategic investment in expansion over the next 20 years. Many potential expansion projects throughout the MTA region have been proposed over the years. When considered in isolation, virtually every potential expansion project is appealing in some aspect. Our Comparative Evaluation applies a rigorous methodology to fairly assess these projects in comparison to one another and in the context of our limited resources. This helps to ensure that we are ready to direct our limited resources toward the most cost-effective and most transformative projects.

Comparative Evaluation appendix structure

Following industry best practices, all potential expansion projects are evaluated using a consistent set of models and tools, as well as a consistent set of criteria, including ridership, time savings, network resiliency and sustainability, capacity, equity, network leverage, geographic distribution, and cost. This ensures that the analyses of costs and benefits are fair and objective and helps determine which projects are the most promising based on these criteria.

This Appendix describes the overall approach and methodology of Comparative Evaluation, as well as how each proposed expansion project performs against the criteria.
Best practices review

We have developed the MTA’s first-ever Comparative Evaluation, a rigorous assessment of potential expansion projects that systematically evaluates costs and benefits. To design our methodology, we considered best practices from transit agencies across the country and the world, including:

- National agencies: New Jersey (NJ Transit), Washington DC (WMATA), Boston (MBTA and Boston Metropolitan Planning Organization), Chicago (CTA), and the San Francisco Bay Area (BART and Muni).
- International agencies: Toronto (Metrolinx), Barcelona (ATM and FGC), London (Transport for London) and Sydney (Sydney Trains).

Best practices as outlined by the Transit Cooperative Research Program and Smart Growth America were also considered.

This research provided examples of the methods used by different agencies to prioritize projects, how decisions are made in practice, and the overarching principles used to steer their decisions. While each agency’s approach to prioritizing investments was unique, the four-step process, as listed below, was commonly used by all of them:

1. Definition of agency goals, principles, and desired outcomes.
2. Selection of prioritization criteria, generally 10 or fewer.
3. Selection of metrics nested within the prioritization criteria, qualitative and quantitative, to assess the performance of projects towards the desired outcomes and goals.
4. Definition of scoring of both metrics and prioritization criteria, often by normalizing or using a point system.
Evaluation criteria and metrics

All projects are evaluated against a consistent set of criteria, including ridership, time savings, network resiliency and sustainability, capacity, equity, network leverage, geographic distribution, and cost.

Ridership

How many people will actually use the service is obviously a critical question in evaluating its benefit. We quantify ridership two different ways: Total Riders and New Riders. Total Riders represents any riders that use the project, boarding or alighting at its station or stops. This includes riders who already use MTA services and would switch to use this project instead of their current route. It also includes riders who would be new to the MTA system, switching their trip from one that's currently served by car, walking, or another, non-MTA transit service. The New Riders calculation looks only at that group.

Total Riders is a measure of the overall project usage, while New Riders is a measure of how many new riders would use the project. It can also serve as a proxy for potential new revenue for the MTA, as well as other potential benefits, such as environmental sustainability. Both total and new riders are calculated using the Regional Transit Forecasting Model (RTFM), projecting out to the year 2045 scenario.

Travel time savings

Travel time savings is often the principal benefit of a project, and in this case, is measured by the total door-to-door travel time saved by all the project riders. It accounts for the time to get to and from transit modes, as well as wait, transfer, and in-vehicle travel times. Door-to-door travel time can be reduced by extending an existing line, increasing frequency and/or speed, and creating better connections between services.

Cost

Cost is an important piece of information needed for project evaluation. However, cost in isolation does not tell the whole story. It must be looked at in terms of how it relates to the project benefits as well. While some projects may be very costly, they may also benefit millions of riders in a significant way and are therefore deserving of consideration. On the other hand, a less costly project that fails to deliver significant benefits may not be a good investment despite its lower cost.

The Comparative Evaluation looks at both the Capital cost of constructing the project and purchasing the appropriate fleet as well as the Operating & Maintenance cost to run the service once it is completed. These are high-level estimates based on the conceptual level of project development—not the type of rigorous cost estimation done based on a precise scope once a project has been further developed. As a project advances, the cost estimates will be revised based on the additional details available. As such, the costs outlined in this document should not be taken as definitive, but rather preliminary estimates for comparison purposes only.

While these are not final, detailed cost estimates, what they do allow is the comparison of project costs to one another on a level playing field, based on similar assumptions and considerations.

Cost Effectiveness

Cost effectiveness is how we consider the relationship between the cost and the benefit of a project. It is measured as ratio between the forecasted costs and travel time savings benefits over a 30-year period.

The costs include the total Capital Costs (construction and fleet costs) for the year 2027, and the annual O&M costs over 30 years. To allow for the aggregation of one-time Capital costs and ongoing O&M costs, annual O&M costs were added up over 30 years, assuming inflation of 3.5% annually, and then discounted to the net present value using a 4.5% discount rate.
Total time savings was chosen as the proxy for the project benefit, as it takes into account both how many riders will use the service, and how much they will benefit compared to the status quo. The total door-to-door time saved by project riders over the same 20-year period isn’t just the annual estimate multiplied by 30. However, since newly-opened projects typically take some time to fully realize their ridership, these figures assume that the benefit ramps up in the first three years (from 30% to 50% to 70% of the 2045 figure from the RTFM model) and then gradually approaches the 2045 figure from there. After 2045, this calculation assumes a cumulative 4% percent growth from 2046 to 2057, the end of the 30 year period. This growth rate is based on the NYMTA 2055 Socioeconomic and Demographic projections.

The calculation of this ratio is relatively complex in order to capture the promise of a project over a long time period. The end result, however, is intuitive. Projects with lower ratios (costs per time saved) are indicative of good investments, as they provide significant benefits relative to the costs to operate and construct. Higher ratios indicate that a project provides relatively low benefits compared to the costs to operate and construct.

Projects that do not save travel time overall, such as some infill stations that can delay some existing riders, tend to have the highest ratios, and are the least cost-effective projects. On the other end, projects that save operating costs in relation to a scenario without the project, tend to be the most cost-effective projects.

Cost effectiveness is not the only measure of a project, of course. Other factors, including the other metrics evaluated below, are also critical to consider, especially factors like equity that underpin all the investments we make in the transit system. Cost effectiveness can also change over time, as the region changes and either the costs or benefits shift, whether through intentional action by public policymakers or as a result of broader societal shifts. But knowing whether a project delivers a high ratio of benefits to cost is a critical factor, one that shapes how the MTA considers potential investments.

Equity

Projects that facilitate social and economic opportunities by providing affordable and reliable transportation options based on the needs of the populations being served, particularly populations that are traditionally underserved and vulnerable, are considered to be more equitable. Equity is measured with two metrics: the absolute number of project riders that travel to or from an Equity Area. Equity Areas are places where high concentration of low-income, minority, and transit-dependent populations live. Projects with a high percentage, or total number of riders, from these areas will most likely provide the greatest benefits in terms of better access to opportunities for those living or traveling there.

See the description below for more detail on Equity Areas and a map showing their location throughout the New York region.

Sustainability

Sustainability is measured by the reduction of miles traveled by car modes and reflects a project’s ability to reduce harmful emissions and pollutants.

The reduction of miles traveled by car is calculated by multiplying the New Riders diverted from car by the distance that they traveled in the scenario without the project. This provides a measure of the reduction of vehicle trips and the distance they would have traveled, which is directly proportional to the potential reduction of Greenhouse Gas (GHG) emissions. The higher the reduction of miles traveled by car, the higher the reduction of GHG emissions.

Resiliency

Resiliency looks at the impact on the project on the resilience of our transit network providing alternate paths of travel in case of a disruption on any one given line. This metric is based on the number of connections to other nearby rail and subway services near the project.

Specifically, this is calculated by aggregating the number of rail or subway stops within ½ from the proposed project site stops in New York City, or within 5 miles in suburban areas. This captures the project’s ability to provide or increase connections to other transit options, thereby providing riders with more alternatives, addressing connectivity needs, and increasing access to the region’s integrated transit network.
Models

Regional Transit Forecasting Model

The MTA’s Regional Transit Forecasting Model (RTFM), which is built on Caliper’s TransCAD platform, is a variant of the 4-step ridership forecasting methodology of trip generation, distribution, mode choice and assignment. It is used to forecast changes in ridership on the various modes, resulting from changes in population, employment, and other socioeconomic factors, as well as changes in the transportation network. The figure below details the structure of the model.

The transportation network in the RTFM 2019 Baseline scenario reflects the 2019 service plans during the AM peak period of a weekday. The transportation network coded in the RTFM 2045 Baseline scenario also includes the major transportation projects planned in the region that are assumed to be in place by this horizon year for the same period of a weekday.

Cost Estimating Tool

In addition to the forecasting model to help define the benefits, Comparative Evaluation also relies on a Cost Estimating Tool to help understand potential costs on a level playing field between projects.

The Cost Estimating Tool was developed to prepare order-of-magnitude capital cost estimates for individual system enhancement and expansion projects (including several with multiple modal/infrastructure options). It utilizes planning-level project data and conceptual infrastructure plans (where available) provided by the MTA and it is consistent with the Federal Transit Administration (FTA) Standard Cost Categories (SCC) for Capital Projects and FTAs SCC Cost Estimation Workbook for MTA use in preparing capital cost estimates.

The cost estimating process followed these steps: define project scope and limits for each project and alternative, develop and evaluate unit cost data for each project and alternative, assess each project’s specific risk factors, apply consistent soft costs, contingency, escalation, and finalize capital cost estimates.

The cost tool is grouped in three elements:
1. Project Information: Infrastructure, and right-of-way, and vehicles
2. Soft Costs: Professional Services, contingencies, consistent by operator
3. Escalation: Historic inflation data through 2022, and growth to mid-year 2027

Equity Areas

Understanding that there are historically disadvantaged populations helps ensure that resources are invested, either through allocation or reallocation, and protected within these communities to reduce obstacles to transit access.

Equity Areas, or places where vulnerable and historically disadvantaged populations live, are defined as the union of Title VI areas (already defined by each MTA operator), and Areas of Concentrated Need in the MTA service area. Title VI Areas are those with a high concentration of low-income or minority populations in each of the MTA’s operator service area, and Areas of Concentrated Need consider a variety of socioeconomic indicators such as poverty level, education, language proficiency, vehicle ownership, and commute time, in addition to poverty level and race.

Overall, 61% of the MTA’s service region’s residents live in these areas: 67% of residents who live in New York City and 48% of residents in New York State-MTA counties outside New York City (Nassau, Suffolk, Westchester, Putnam, Dutchess, Orange, and Rockland counties.).
RESULTS 06

Methodology

Results
Analysis results

Based on the rigorous modeling described above, each project was evaluated on a level playing field. The results of that evaluation are summarized in the chart below and details of each project are explored in more detail on individual projects pages that follow.

The first metric shown on the summary table and a key metric in understanding a project is cost effectiveness. This figure looks at both the Capital and Operating & Maintenance costs of a project and puts them in the context of their benefits, using Travel Time Savings to account for both the number of riders and the extent to which they benefit from the project compared to the status quo. By putting cost and benefit in relation to one another, it gives us a good sense of how a project fares as an investment of limited public dollars.

While cost effectiveness is important, other measures are also critical to evaluate the potential impact of a project. Equity benefits are greatest when projects serve a greater share of riders from designated Equity Areas. Projects located in areas that are not as well served by transit have the biggest Regional Accessibility improvements, while Sustainability is enhanced by projects that have the biggest reductions in Vehicle Miles Traveled. Resilience is improved by projects that provide connections to other transit options. Systemwide Capacity is most improved by projects that reduce crowding by increasing service frequency and distributing ridership across the system. Network Leverage is greatest for those projects that fall entirely within the MTA’s right-of-way. All of these metrics are important, helping to gauge how projects perform relative to each other, as well as the benefits they provide to the region and to riders.

Inclusion in this analysis does not mean that the MTA will be pursuing a project. Decisions about which of these projects, if any, will be included in subsequent MTA Capital Programs, will be made in the context of those future programs, including the amount of funding available to Rebuild and Improve the existing MTA system, which will need to be prioritized before any expansion projects can be considered. Similarly, the cost estimates included in this report are based on known factors today and without extensive site conditions or engineering analysis. While these estimates are based on a consistent set of assumptions for comparison purposes, projects selected for advancement will require additional engineering and planning that will certainly lead to changes in the cost estimate. This analysis is intended to help inform those conversations and decisions, not replace them.

For the purposes of this summary table and to make comparison easier throughout the document, all metrics have been converted to a scale of 0 to 100, where 0 indicates the least favorable value, and 100 indicates the highest favorable value.

The project profiles on the following pages will include both these comparative values as well as the underlying data on which they are based.

Due to additional quality control, minor calculation errors in the scores have been corrected in this version.
Comparative Evaluation summary table

<table>
<thead>
<tr>
<th>Projects</th>
<th>Cost Effectiveness</th>
<th>Ridership</th>
<th>Equity</th>
<th>Geographic Distribution</th>
<th>Sustainability</th>
<th>Resiliency</th>
<th>Capacity</th>
<th>Network Leverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Danbury-Southeast Connection</td>
<td>$6.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elmhurst Station (LIRR)</td>
<td>No Time Saved*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harlem Line Capacity Improvements</td>
<td>$2.46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hudson Line to Penn Station</td>
<td>$4.54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inner New Haven Line Yard</td>
<td>$5.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interborough Express LRT (IBX)</td>
<td>$52.41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower Montauk Branch Reactivation</td>
<td>$6.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Lots Ave No 3 Line to Flatlands</td>
<td>$8.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Port Jefferson Branch Capacity Improvements</td>
<td>$6.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Port Jarvis Line Capacity Improvements (MP Yard)</td>
<td>$40.46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ridgewood Busway</td>
<td>$0.0**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rockaway Beach Branch (NYCT)</td>
<td>$6.72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Second Ave Subway South to Houston</td>
<td>$4.47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Second Ave Subway West to 52nd/Bdwy</td>
<td>$14.34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speonk-Montauk Capacity Improvements</td>
<td>$13.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staten Island North Shore BRT</td>
<td>$1.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staten Island West Shore BRT via Korean War Vet Pkwy</td>
<td>$1.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stewart Airport Commuter Rail</td>
<td>$10.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sunnyside Station (LIRR)</td>
<td>No Time Saved*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tenth Ave Station on No 7 Line</td>
<td>$81.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utica - Nostrand Junction Capacity Improvements</td>
<td>$0.28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utica Alt A - BRT</td>
<td>$0.36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utica Alt B - Subway to Kings Plaza</td>
<td>$4.62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utica Alt C - Subway to Church Ave + BRT</td>
<td>$17.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W Line to Red Hook</td>
<td>$90.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: *Elmhurst and Sunnyside have no overall time savings due to increased travel time for existing customers.* **Ridgewood Busway operational savings over project lifetime exceed capital costs.**
Danbury-Southeast Connection

Description: Reactivation of a 11-mile portion of the Beacon Line between Southeast New York and Danbury, CT, for passenger service.

Project objectives: Provide a rail connection from Danbury, CT, to the Metro-North Railroad Harlem Line for improved travel time and eased parking demands at Harlem Line stations and I-84/I-684 congestion.

Reactivating the Beacon Line between Danbury, Connecticut and Southeast, New York would result in significant travel time savings, but for a small number of riders and at a high cost ($800+M), relative to the benefits. Although it would expand regional access by connecting two Metro-North lines and generate sustainability benefits as a result of reduced vehicle travel, it does not benefit equity areas or reduce crowding capacity significantly on the system. Further, the right-of-way is only partially owned by MTA, with the portion in Connecticut owned by Housatonic Railroad, which results in a midrange score for network leverage.

Evaluation results

- Construction Cost (2027): $820 million
- Fleet Cost (2027): $52 million
- Annual O&M Cost (2027): $29 million
- Daily Ridership (2045): 2,600
- New Daily Riders (2045): 900
- Riders from Equity Areas (2045): 590
- Travel Time Saved Per Trip (minutes): 12.2

Special Considerations:
Connecting to Harlem Line at Southeast Station requires construction through wetland areas.

Construction of a new, second station at Danbury is required because of the existing track geometry.

Housatonic Railroad owns corridor in Connecticut.

Findings

While this project would have a significant time savings for those who ride it, it would serve a very small number of riders in relation to the capital and operating costs.

Reactivating the Beacon Line between Danbury, Connecticut and Southeast, New York would result in significant travel time savings, but for a small number of riders and at a high cost ($800+M), relative to the benefits. Although it would expand regional access by connecting two Metro-North lines and generate sustainability benefits as a result of reduced vehicle travel, it does not benefit equity areas or reduce crowding capacity significantly on the system. Further, the right-of-way is only partially owned by MTA, with the portion in Connecticut owned by Housatonic Railroad, which results in a midrange score for network leverage.
Elmhurst Station (LIRR)

Description: Restoration of Long Island Rail Road service at the former Elmhurst Station on the Port Washington Branch in Queens.

Project objectives: Provide additional access to employment and commercial centers near station.

Findings

This project provides marginal benefits in an area already well served by transit. It would save travel time for new riders but create additional travel time for existing LIRR customers, resulting in no net time savings.

Despite its low-cost relative to other projects, reopening the Elmhurst station on LIRR scores poorly because of low ridership and no net travel time savings due to added travel time for existing customers going through the station. This project would not increase capacity, nor would it improve regional access, since the area is already well served by transit. The station does well in serving a high percentage of riders from equity areas and in leveraging an MTA asset since the new station would be built in the same location as the old station.

Evaluation results

- **Construction Cost (2027):** $210 million
- **Fleet Cost (2027):** N/A
- **Annual O&M Cost (2027):** $1 million
- **Daily Ridership (2045):** 3,100
- **New Daily Riders (2045):** 1,200
- **Riders from Equity Areas (2045):** 3,040
- **Travel Time Saved Per Trip (minutes):** 0.6

Scorecard

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Metrics</th>
<th>Result</th>
<th>Score (0-100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equity</td>
<td>Percent of riders from Equity Areas</td>
<td>97%</td>
<td>97</td>
</tr>
<tr>
<td>Sustainability</td>
<td>Change in daily vehicle miles traveled</td>
<td>-5,982</td>
<td>28</td>
</tr>
<tr>
<td>Resiliency</td>
<td>Rail connections within ½ mile (NYC) or 5 miles (suburbs)</td>
<td>3</td>
<td>17</td>
</tr>
<tr>
<td>Capacity</td>
<td>Change in passenger hours of crowding systemwide (AM peak period)</td>
<td>+1,212 hours</td>
<td>0</td>
</tr>
<tr>
<td>Geographic Distribution</td>
<td>Change in regional accessibility</td>
<td>+3,944 hours</td>
<td>0</td>
</tr>
<tr>
<td>Network Leverage</td>
<td>Weighted sum of MTA, Public and Private ROW</td>
<td>99%</td>
<td>99</td>
</tr>
</tbody>
</table>

* No overall time savings due to increased travel time for existing users.
Harlem Line Capacity Improvements

Description: Construction of a third mainline track on the Metro-North Railroad Harlem Line between Crestwood and North White Plains, along with capital investments in power, signals, and communications, and capacity improvements and associated investments at Brewster Yard.

Project objectives: Provide more service during peak periods to accommodate future growth and reduces crowding, improves operational flexibility and service reliability, enhances opportunity for improved reverse peak service, allows for track maintenance without reducing capacity or limiting reverse peak service, and adds additional train service at Scarsdale, Hartsdale, and White Plains.

Findings

This project would enable additional passenger service and increase operational efficiency and flexibility. It is cost effective due to reduced travel times for many riders.

Providing a third mainline track between Crestwood and North White Plains is cost-effective because it would reduce travel time for a large number of riders for a relative low cost, in relation to other projects. It also scores well in resiliency, with many other rail connections nearby, and in network leverage, as it is on Metro-North’s existing right-of-way. It reduces vehicle usage, but that reduction is low in relation to other projects, so it does not score well in sustainability. The additional passenger service as a result of this project reduces crowding slightly and improves regional access, but the improvements are small in relation to other projects and it does not score well in capacity or geographic distribution.

Evaluation results

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Metrics</th>
<th>Result</th>
<th>Score (0-100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost, Ridership & Time Savings</td>
<td>Cost/Time saved (30 years)</td>
<td>$2.46/min</td>
<td>89</td>
</tr>
<tr>
<td>Equity</td>
<td>Percent of riders from Equity Areas</td>
<td>57%</td>
<td>45</td>
</tr>
<tr>
<td>Sustainability</td>
<td>Change in daily vehicle miles traveled</td>
<td>-3,600</td>
<td>36</td>
</tr>
<tr>
<td>Resiliency</td>
<td>Rail connections within ½ mile (NYC) or 5 miles (suburbs)</td>
<td>12</td>
<td>67</td>
</tr>
<tr>
<td>Capacity</td>
<td>Change in passenger hours of crowding systemwide (AM peak period)</td>
<td>-453 hours</td>
<td>5</td>
</tr>
<tr>
<td>Geographic Distribution</td>
<td>Change in regional accessibility</td>
<td>-6,520 hours</td>
<td>25</td>
</tr>
<tr>
<td>Network Leverage</td>
<td>Weighted sum of MTA, Public and Private ROW</td>
<td>100%</td>
<td>100</td>
</tr>
</tbody>
</table>

Scorecard

<table>
<thead>
<tr>
<th></th>
<th>Capacity</th>
<th>Geographic Distribution</th>
<th>Resiliency</th>
<th>Sustainability</th>
<th>Equity</th>
<th>Cost, Ridership & Time Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scorecard</td>
<td>5</td>
<td>25</td>
<td>67</td>
<td>36</td>
<td>45</td>
<td>89</td>
</tr>
</tbody>
</table>

Above, Harlem Line Capacity Improvements
Hudson Line to Penn Station

Description: Provision of Metro-North Railroad Hudson Line commuter rail service between Poughkeepsie and Penn Station via Amtrak’s Empire Connection, with one potential new station in Harlem (125th Street and Broadway) and additional fleet storage in Poughkeepsie.

Project objectives: Provide additional transit options and one-seat rides for commuters traveling to/from Manhattan’s West Side.

Special Considerations: Will require negotiations with Amtrak regarding Metro-North operations on the Amtrak Empire Line, and the reassignment of trains on Penn Station platforms to accommodate Hudson Line trains.

Findings

This project would provide time savings for a modest number of riders and at a high cost. It would increase resiliency by providing an alternative direct service to Penn Station for Hudson Line customers.

Providing service to Penn Station on the Hudson line scores above average in cost effectiveness because of the significant travel time savings it provides, albeit at a high cost and to a relatively low number of riders. It also does well in equity since many of the riders are from equity areas. It does well in sustainability and resiliency by reducing vehicle usage and providing many alternative rail connections. It also scores well in network leverage since it uses Metro-North’s existing rail right-of-way for most of the alignment. Even though it does improve capacity and geographic distribution, it does not score as well relative to other projects.
Inner New Haven Line Yard (Port Chester)

Description: Construction of a new fleet storage yard located between the Rye and Port Chester Stations on the Metro-North Railroad New Haven Line in New York.

Project objectives: Support the storage needs for additional fleet needed to meet ridership demand and increased service levels on the Inner New Haven Line. Improve operational efficiency, flexibility, and service reliability, and provide opportunity for enhanced reverse peak service.

Findings

This project would enable some additional service at the Rye station, but its main benefit is operational efficiency and flexibility. Relatively low ridership, as well as cost, result in average cost effectiveness.

A new rail storage yard for the New Haven Line in New York State receives an above average cost effectiveness score since it saves some time for riders at a relatively low cost. It does not have a big impact on ridership because the only difference in the service plan is an additional stop at Rye station for some trains, but no increase in frequency. It does not perform well in equity since it does not have a large share of its riders from equity areas. Similarly, it does not score well in resiliency and sustainability because it does not reduce vehicle usage significantly or provide any new rail connections. The project performs poorly in geographic distribution since a new yard does not improve regional access. The capacity score is low because of how capacity is measured: by reduction in crowding systemwide. However, it would increase capacity in the operational sense of providing more space to store additional trains on the New Haven Line. The project scores well in network leverage since it would be constructed mainly within existing Metro-North right-of-way.
Interborough Express Light Rail Transit

Description: A new transit line between Queens and Brooklyn along an existing freight corridor, connecting to 17 subway lines (2 3 5 7 A B C D E F J L M N R Q Z), and the Long Island Rail Road (LIRR), serving areas of Brooklyn and Queens.

Project objectives: Reduce travel times on transit between Brooklyn and Queens and divert trips from overburdened Manhattan-bound subway lines.

Interborough Express Light Rail Transit

Evaluation results

Construction Cost (2027): $5.5 billion
Fleet Cost (2027): $432 million
Annual O&M Cost (2027): $83 million
Daily Ridership (2045): 118,700
New Daily Riders (2045): 13,200
Riders from Equity Areas (2045): 112,440
Travel Time Saved Per Trip (minutes): 5.9

Special Considerations:
- Light Rail Transit (LRT) would be a new and stand-alone mode for MTA.
- Street-running required (<1 mile) in Middle Village, Queens.
- Requires coordination and concurrence with the following entities:
 - CSX, which owns northern three miles of right-of-way
 - PANYNJ for the Cross Harbor Freight Program (CHFP)
 - EDC and City Hall, for the maintenance & storage facility (MSF) and terminal station at Brooklyn Army Terminal.

Findings

This project scores well in many metrics, including cost effectiveness. It serves a large number of new and total riders, especially from equity areas, and provides connections to many other transit lines, using an existing right-of-way.

The Interborough Express scores well in almost all metrics. High ridership and significant time savings make it cost effective. It does well in equity because it serves a large number of riders from equity areas. Similarly, it scores well in resiliency and sustainability by greatly reducing vehicle usage and providing multiple connections to the subway (up to 17 lines) and LIRR. It scores well in geographic distribution by improving regional access and it gets a high score for network leverage with 11 of its 14 route miles owned by the MTA. It does not score as well in capacity in relation to other projects because it acts as a feeder to existing subway lines, increasing crowding on some that are at, or close to, capacity (i.e. Queens Blvd Line).
Lower Montauk Branch Reactivation

Description: Reactivation of an approximately nine-mile segment of the Long Island Rail Road Lower Montauk Branch between Jamaica and Long Island City, with new stations at Greenpoint Avenue, Haberman, Grand Avenue, Fresh Pond, Metro Mall, 80th St, Woodhaven Blvd, and Richmond Hill.

Project objectives: Increase transit options for underserved communities and improve network connections for intra- and inter-borough travelers; provide opportunities for development and growth near stations; utilize/leverage existing right-of-way.

Findings

This project performs poorly as it provides low time savings in relation to cost. Although the project would provide rail service to equity areas and make use of an existing MTA right-of-way, there are challenges of sharing the use of the corridor with growing freight operations.

Reactivating this section of the LIRR does not score well in cost effectiveness because costs are high, and ridership and time savings are low. It gets above average scores in equity since a large share of its riders are from equity areas, and it does well in resiliency and sustainability, since it takes many trips away from vehicles and provides new connections to rail. It does not improve capacity, making the system more crowded by adding riders to LIRR services. It improves regional access slightly but gets a lower score relative to other projects. Although it scores well in network leverage because MTA owns the right-of-way, it is narrow with adjacent buildings and roadways, making shared use with growing freight operations challenging and costly.
New Lots Avenue 3 Line Extension

Flatlands

Description: Extension of the New Lots Avenue 3 line on an elevated structure southeast past Livonia Yard to a new terminal at Flatlands Avenue and Linwood Street/Elton Street.

Project objectives: Reduce travel times and increase reliability for residents and workers in underserved communities; provide better connectivity to existing subway network.

Description: Extension of the New Lots Avenue 3 line on an elevated structure southeast past Livonia Yard to a new terminal at Flatlands Avenue and Linwood Street/Elton Street.

Project objectives: Reduce travel times and increase reliability for residents and workers in underserved communities; provide better connectivity to existing subway network.

Evaluation results

- **Construction Cost (2027):** $1.8 billion
- **Fleet Cost (2027):** $101 million
- **Annual O&M Cost (2027):** $17 million
- **Daily Ridership (2045):** 8,600
- **New Daily Riders (2045):** 300
- **Riders from Equity Areas (2045):** 8,510
- **Travel Time Saved Per Trip (minutes):** 3.9

Special Considerations:
Livonia Yard is planned for re-construction and an extension of the 3 line could provide synergies with yard construction, but coordination is needed with the Livonia redesign to not preclude extension.

A potential separation of passenger service tracks from yard lead tracks could have an impact on yard operations.

Findings

This project is not cost effective due to the high cost to extend the line with a small increase in ridership and time savings. Its primary benefit is serving equity areas.

Extending the New Lots Ave 3 line to Flatlands Avenue performs poorly due to its high cost and relatively low ridership and time savings. It scores well in equity since the majority of its riders are from equity areas. Although it reduces auto usage slightly, it is small compared to other projects and it does not score well in sustainability. It scores poorly in resiliency because it does not provide any new connections to rail. It does not provide benefits in capacity and actually increases crowding by adding riders to the existing line. Similarly, it does not score well in geographic distribution because it does not improve regional access significantly. It gets an average score in network leverage since a portion of the right-of-way is owned by MTA.
New Lots Avenue 3 Line Extension

Alternative Considered: Extension of the New Lots Avenue 3 line on an elevated structure southeast past Livonia Yard to a new terminal in the vicinity of Spring Creek and Gateway Center Mall.

Alternative Considered: Spring Creek

Evaluation results

- **Construction Cost (2027):** $2.5 billion
- **Fleet Cost (2027):** $101 million
- **Annual O&M Cost (2027):** $26 million
- **Daily Ridership (2045):** 9,800
- **New Daily Riders (2045):** 400
- **Riders from Equity Areas (2045):** 9,510
- **Travel Time Saved Per Trip (minutes):** 3.6

Special Considerations:
Livonia Yard is planned for re-construction and an extension of the 3 line could provide synergies with yard construction, but coordination is needed with the Livonia redesign to not preclude extension.

A potential separation of passenger service tracks from yard lead tracks could have an impact on yard operations.

Findings

This alternative is less cost effective than the alternative selected for analysis, with significantly higher construction costs without a corresponding increase in ridership.
Port Jefferson Branch Capacity Improvements

Description: Improvements of the Long Island Rail Road Port Jefferson Branch, including electrification, double tracking, stations, storage yard, and associated infrastructure.

Project objectives: Increase travel speeds and frequency while providing a one-seat ride to Penn Station and Grand Central Madison; reduce demand on the Ronkonkoma Branch.

Evaluation results

Construction Cost (2027): $3.1 billion

Fleet Cost (2027): N/A

Annual O&M Cost (2027): $74 million

Daily Ridership (2045): 27,900

New Daily Riders (2045): 1,400

Riders from Equity Areas (2045): 10,970

Travel Time Saved Per Trip (minutes): 3.6

Special Considerations:
- Electrification of the line requires additional capital improvements to be in place.
- Space for a new terminal electric train yard needs to be identified.
- Additional studies will need to be conducted to determine right-of-way and fleet needs.
- Currently exploring former Lawrence Aviation site in partnership with Suffolk County.

Findings

This project has some benefits, but its high cost, coupled with relatively low ridership and time savings, results in an average cost effectiveness.

Improvements on the Port Jefferson Branch get an average cost effectiveness score, mainly due to the high cost and relatively low ridership. Less than half of the riders are from equity areas and so it gets a low score for equity. It does reduce auto usage a fair amount and gets an average score for sustainability, though it does not provide any new rail connections and scores poorly in resiliency. While the project is intended to relieve local crowding in the AM peak, it does not reduce crowding systemwide as much as most other projects. This project gets high scores in geographic distribution, since it improves regional access significantly, as well as network leverage, since it’s almost entirely on MTA right-of-way.
Port Jervis Line Capacity Improvements (Midpoint Yard)

Description: Construction of a new rail yard at Metro-North Railroad Campbell Hall station capitalizing on new Port Jervis line track infrastructure.

Project objectives: Improve operational efficiency, flexibility, and service reliability, and introduce reverse peak service.

Findings

This project would attract relatively few riders at a high cost, and is dependent on additional long-term, high cost regional investments.

Construction of a Mid-Point Yard at Campbell Hall on the Port Jervis Line does not score well in most metrics. Although a new Mid-Point Yard would provide operational flexibility and service improvements, it is not a cost-effective project mainly due to low ridership and negligible increase in travel times savings, capacity and geographic distribution. Network leverage also gets a low score since MTA does not own the property for the construction of the yard. It does scores above average in equity since many of its riders are from equity areas and it reduces vehicle usage significantly, largely because it provides an alternative to bus or driving.
Ridgewood Busway

Description: Conversion of an existing MTA-owned right-of-way into an exclusive busway running approximately half a mile from Palmetto Street near Onderdonk Avenue to Fresh Pond Road. This project has previously been referred to as Myrtle Avenue Busway, as it runs under the Myrtle Avenue line. Since the actual area of the project is not at Myrtle Avenue, however, the project has been renamed.

Project objectives: Improve operations by eliminating difficult turns and traffic issues. Increase bus speeds and service reliability.

Evaluation results

Costs
- Construction Cost (2027): $30 million
- Fleet Cost (2027): N/A
- Annual O&M Cost (2027): $2 million

** Ridership**
- Daily Ridership (2045): 8,900
- New Daily Riders (2045): 200
- Riders from Equity Areas (2045): 8,350

Travel Time
- Travel Time Saved Per Trip (minutes): 1.7

Special Considerations:
- Significant operational cost savings. Additional benefits not captured in metrics:
 - Service Improvements to riders on multiple bus routes; these improvements would extend beyond project area and include improvements such as increased reliability to entire bus routes.
 - Street Safety improvements and decrease number of buses on local street network.

Findings

This project performs well in cost effectiveness due to operational savings and a relatively low cost to implement. This is a small project, but its positive impacts go beyond the immediate geographic region of the project and benefit riders on multiple bus routes that would become more reliable and operationally efficient.

Converting this MTA-owned right-of-way into a busway scores exceptionally well in cost effectiveness since it saves money operationally. It also does well in equity, with most of its riders being from equity areas. However, it does not score well in resiliency and sustainability, nor does it improve systemwide capacity or regional accessibility significantly enough, relative to other projects. Network leverage gets an average score since MTA owns a portion of the proposed busway under the elevated subway line.

Scorecard

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Metrics</th>
<th>Result</th>
<th>Score (0-100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost, Ridership & Time Savings</td>
<td>Cost/Time saved (30 years)</td>
<td>$0/min*</td>
<td>100</td>
</tr>
<tr>
<td>Equity</td>
<td>Percent of riders from Equity Areas</td>
<td>94%</td>
<td>93</td>
</tr>
<tr>
<td>Sustainability</td>
<td>Change in daily vehicle miles traveled</td>
<td>-287</td>
<td>22</td>
</tr>
<tr>
<td>Resiliency</td>
<td>Rail connections within ½ mile (NYC) or 5 miles (suburbs)</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>Capacity</td>
<td>Change in passenger hours of crowding systemwide (AM peak period)</td>
<td>-239 hours</td>
<td>2</td>
</tr>
<tr>
<td>Geographic Distribution</td>
<td>Change in regional accessibility</td>
<td>-347 hours</td>
<td>0</td>
</tr>
<tr>
<td>Network Leverage</td>
<td>Weighted sum of MTA, Public and Private ROW</td>
<td>50%</td>
<td>33</td>
</tr>
</tbody>
</table>

*Operation and maintenance savings exceed capital costs over project lifetime.
Rockaway Beach Branch Reactivation
New York City Transit

Description: Reactivation of 6-mile alignment along former Long Island Rail Road right-of-way serving Central Queens with up to four new stations and connections at Aqueduct and Howard Beach. Alternatives included Long Island Rail Road and New York City Transit subway as the modes.

Project objectives: Provide service to underserved communities; increase transit options; reduce auto dependence; and improve network connections for intra- and inter-borough travelers; add opportunities for development and growth near stations.

Evaluation results

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Metrics</th>
<th>Result</th>
<th>Score (0-100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost, Ridership & Time Savings</td>
<td>Cost/Time saved (30 years)</td>
<td>$6.72/min</td>
<td>56</td>
</tr>
<tr>
<td>Equity</td>
<td>Percent of riders from Equity Areas</td>
<td>84%</td>
<td>80</td>
</tr>
<tr>
<td>Sustainability</td>
<td>Change in daily vehicle miles traveled</td>
<td>-24,297</td>
<td>48</td>
</tr>
<tr>
<td>Resiliency</td>
<td>Rail connections within ½ mile (NYC) or 5 miles (suburbs)</td>
<td>6</td>
<td>33</td>
</tr>
<tr>
<td>Capacity</td>
<td>Change in passenger hours of crowding systemwide (AM peak period)</td>
<td>-842 hours</td>
<td>10</td>
</tr>
<tr>
<td>Geographic Distribution</td>
<td>Change in regional accessibility</td>
<td>0 hours</td>
<td>0</td>
</tr>
<tr>
<td>Network Leverage</td>
<td>Weighted sum of MTA, Public and Private ROW</td>
<td>66%</td>
<td>54</td>
</tr>
</tbody>
</table>

Findings

This project does not score well in most metrics.

Reactivating the Rockaway Beach Branch with NYCT service has a high cost and serves a relatively modest number of riders. This project would reduce auto usage and provide additional rail connections, but compared to other projects, the benefits are average for sustainability and resiliency. There is minimal crowding reduction since some Queens Blvd Line subway service would be moved to serve this new line, and there is no improvement in geographic distribution, resulting in low scores for both. Additionally, a portion of the right-of-way is currently proposed to be a pedestrian and bicycle greenway corridor by New York City, which would compete with a transit alignment along this corridor.
Rockaway Beach Branch Reactivation

Alternative Considered: Long Island Rail Road

Findings

The LIRR alternative has a slightly lower cost but would serve dramatically fewer riders and would increase travel time to riders on the main LIRR branch, making it even less cost-effective than the NYCT alternative.
Second Avenue Subway South to Houston

Description: Extending the Second Avenue Subway south by three miles, from 72nd Street to Houston Street, including the construction of six new subway stations at 55th, 42nd, 34th, 23rd, 14th St, and Houston Streets.

Project objectives: Provide service to underserved communities; enhance transit options and improve network connectivity by providing transfer opportunities; increase subway service frequency between 72nd St and 125th St with the addition of new T line service; reduce travel times for customers east of 2nd Avenue; reduce demand on the Lexington Avenue Line; and support opportunities for development and growth near stations.

Findings

The high cost of this project is partially offset by the high ridership and moderate travel time savings.

Extending the Second Avenue Subway south to Houston St scores above average in cost effectiveness because of very high ridership and moderate time savings, which offset the project’s high cost. A little more than half of the total riders are from equity areas, resulting in an average score in equity. It reduces auto use only slightly and does not score as well in sustainability compared to other projects. However, it provides new rail connections to many subway lines, and gets a very high resiliency score. While it does reduce crowding, it scores below average in capacity compared to other projects. It does not really improve regional accessibility and scores poorly in geographic distribution. It scores below average in network leverage because it would require tunneling under New York City-owned streets.

Evaluation results

<table>
<thead>
<tr>
<th>Scorecard</th>
<th>Criteria</th>
<th>Metrics</th>
<th>Result</th>
<th>Score (0-100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost, Ridership & Time Savings</td>
<td>Cost/Time saved (30 years)</td>
<td>$4.47/min</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>Equity</td>
<td>Percent of riders from Equity Areas</td>
<td>60%</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>Sustainability</td>
<td>Change in daily vehicle miles traveled</td>
<td>-3,747</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Resiliency</td>
<td>Rail connections within ½ mile (NYC) or 5 miles (suburbs)</td>
<td>16</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>Capacity</td>
<td>Change in passenger hours of crowding systemwide (AM peak period)</td>
<td>-2,595 hours</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Geographic Distribution</td>
<td>Change in regional accessibility</td>
<td>-296 hours</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Network Leverage</td>
<td>Weighted sum of MTA, Public and Private ROW</td>
<td>50%</td>
<td>33</td>
<td></td>
</tr>
</tbody>
</table>

Daily Ridership (2045): 230,400
New Daily Riders (2045): 2,900
Riders from Equity Areas (2045): 137,500
Travel Time Saved Per Trip (minutes): 2.0
Second Avenue Subway West Extension
125th Street/Broadway

Description: Extension of the Second Avenue Subway west along 125th Street, terminating at Broadway-125th St, with three new subway stations.

Project objectives: Improve mobility and connections between West and East sides of Manhattan; provide customers with accessibility to East Side job centers via Second Avenue Subway; add opportunities for development and growth near stations; reduce congestion on bus routes along 125th Street.

Findings

Despite the high cost, this project is cost effective with very high ridership and moderate travel time savings.

Extending the Second Avenue Subway west along 125th Street gets a high score in cost effectiveness because it provides a new east-west connection across Manhattan, saves travel time and serves a great deal of riders, most of which are in equity areas. It reduces car usage by a fair amount and connects with numerous other rail lines, resulting in average sustainability and high resiliency scores. It scores well on capacity since it reduces crowding, mainly on west side subway lines. Though it improves regional accessibility slightly, the score is low relative to other projects. It scores below average in network leverage because it would require tunneling under New York City-owned streets.

Evaluation results

- **Construction Cost (2027):** $7.5 billion
- **Fleet Cost (2027):** $611 million
- **Annual O&M Cost (2027):** $65 million
- **Daily Ridership (2045):** 239,700
- **New Daily Riders (2045):** 7,500
- **Riders from Equity Areas (2045):** 224,050
- **Travel Time Saved Per Trip (minutes):** 3.6

Special Considerations: Prerequisite to this project is the completion of Second Avenue Subway Phase 2.
Second Avenue Subway West Extension

Alternative Considered: 137th Street/Broadway via Broadway

Description: Extension of the Second Avenue Subway west along 125th Street then turning north along Broadway, terminating at Broadway-137th St, with up to four new subway stations.

Evaluation results

- **Construction Cost (2027):** $9.1 billion
- **Fleet Cost (2027):** $717 million
- **Annual O&M Cost (2027):** $80 million
- **Daily Ridership (2045):** 256,800
- **New Daily Riders (2045):** 8,800
- **Riders from Equity Areas (2045):** 240,930
- **Travel Time Saved Per Trip (minutes):** 3.8

Special Considerations:
Prerequisite to this project is the completion of Second Avenue Subway Phase 2.
Involves tunneling under existing line requiring stabilization.

Findings

This alternative is less cost effective than the 125th Street/Broadway alternative selected for analysis, with a higher cost without a correspondingly higher ridership or time savings benefit. As a result, preliminary analysis indicates that the 125th Street/Broadway alternative is the most promising westward configuration for Second Avenue Subway.

Feasibility of Other Alternatives:

- **Second Avenue Subway West to 137 Street/Broadway via Riverside**
 - This alternative was also considered as an alternate underground configuration to reach 137 St and Broadway. Cost modeling showed it would be more expensive and so it was not included in the final analysis at this time.

- **Second Avenue Subway West via St Nicholas Ave**
 - In further analyzing this alternative, significant operational problems were identified, especially related to capacity on the lines. As a result, this alternative was not selected for analysis at this time.
Speonk-Montauk Capacity Improvements

Description: Improvements of the Long Island Rail Road Montauk Branch between Speonk and Montauk, including signal upgrades and associated infrastructure work.

Project objectives: Improve operational flexibility and ability to add service westbound during the PM.

Evaluation results

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Metrics</th>
<th>Result</th>
<th>Score (0-100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost, Ridership & Time Savings</td>
<td>Cost/Time saved (30 years)</td>
<td>$13.66/min</td>
<td>3</td>
</tr>
<tr>
<td>Equity</td>
<td>Percent of riders from Equity Areas</td>
<td>35%</td>
<td>16</td>
</tr>
<tr>
<td>Sustainability</td>
<td>Change in daily vehicle miles traveled</td>
<td>-2,143</td>
<td>24</td>
</tr>
<tr>
<td>Resiliency</td>
<td>Rail connections within 1/2 mile (NYC) or 5 miles (suburbs)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Capacity</td>
<td>Change in passenger hours of crowding systemwide (AM peak period)</td>
<td>+1,063 hours</td>
<td>0</td>
</tr>
<tr>
<td>Geographic Distribution</td>
<td>Change in regional accessibility</td>
<td>-2,049 hours</td>
<td>7</td>
</tr>
<tr>
<td>Network Leverage</td>
<td>Weighted sum of MTA, Public and Private ROW</td>
<td>100%</td>
<td>100</td>
</tr>
</tbody>
</table>

Findings

This project would not attract many riders and, despite its relatively low cost, it is not cost effective. It would not significantly address highway congestion concerns to/from the South Fork.

Improvements to the LIRR's Montauk Branch are not cost effective with very low ridership and moderate time savings. It would not serve many riders from equity areas. While it reduces vehicle usage slightly, it is below average compared to other projects and does not score well in sustainability. It does not provide any new rail connections and scores poorly in resiliency. It gets a low score for capacity as well, since it actually increases crowding and adds more riders to existing LIRR trains. It improves regional accessibility slightly but scores low in geographic distribution relative to other projects. Since it is entirely on MTA's right-of-way, it scores well in network leverage.
Staten Island North Shore Bus Rapid Transit

Description: Implementation of a new 8-mile Bus Rapid Transit (BRT) service along 4.8 miles of the former North Shore Railroad right-of-way and 3.2 miles on City streets; operating on an exclusive bus lane along Richmond Terrace (0.5 mi) and in mixed traffic along South Avenue (2.7 mi).

Project objectives: Improve connections between neighborhoods and existing North and West Shore activity centers, industries, employment centers, and the Staten Island Railway; enhance transit reliability.

Findings

This project improves reliability and efficiency, resulting in the travel time savings for a significant number of riders and a high cost effectiveness score.

A new BRT route along Staten Island's North Shore receives a high cost effectiveness score due to reduced travel times for a significant number of riders. It scores above average in equity since many of those riders are from equity areas. Although it reduces vehicle usage, it is below average compared to other projects and receives a fair score in sustainability. It scores poorly in resiliency since it only provides one new rail connection. It scores poorly in capacity as well since it increases crowding by adding riders to subway lines in lower Manhattan. It improves regional accessibility and receives an average score in geographic distribution relative to other projects. For network leverage, it scores below average since its alignment is along New York City-owned right-of-way.

Evaluation results

Construction Cost (2027): $1.3 billion
Fleet Cost (2027): $34 million
Annual O&M Cost (2027): $24 million
Daily Ridership (2045): 32,000
New Daily Riders (2045): 1,300
Riders from Equity Areas (2045): 22,820
Travel Time Saved Per Trip (minutes): 5.6

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Metrics</th>
<th>Result</th>
<th>Score (0-100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost, Ridership & Time Savings</td>
<td>Cost/Time saved (30 years)</td>
<td>$1.43/min</td>
<td>97</td>
</tr>
<tr>
<td>Equity</td>
<td>Percent of riders from Equity Areas</td>
<td>71%</td>
<td>64</td>
</tr>
<tr>
<td>Sustainability</td>
<td>Change in daily vehicle miles traveled</td>
<td>-7,904</td>
<td>30</td>
</tr>
<tr>
<td>Resiliency</td>
<td>Rail connections within ½ mile (NYC) or 5 miles (suburbs)</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Capacity</td>
<td>Change in passenger hours of crowding systemwide (AM peak period)</td>
<td>+42 hours</td>
<td>0</td>
</tr>
<tr>
<td>Geographic Distribution</td>
<td>Change in regional accessibility</td>
<td>-1,013 hours</td>
<td>42</td>
</tr>
<tr>
<td>Network Leverage</td>
<td>Weighted sum of MTA, Public and Private ROW</td>
<td>50%</td>
<td>33</td>
</tr>
</tbody>
</table>
Staten Island West Shore Bus Rapid Transit

Korean War Veterans Pkwy

Description: Improvements to transit connectivity and access within, to, and from the West Shore of Staten Island.

The best performing alternative considered is Bus Rapid Transit along Korean War Veterans Pkwy and Richmond Avenue from Tottenville to Bayonne.

Project Objectives: Provide more reliable transit service on Staten Island’s West Shore. Improve connections between neighborhoods, activity, and employment centers, and add opportunities for development and growth near stations.

Findings

This project would provide better connections and reliability, resulting in significant travel time savings, but for a relatively small number of riders.

A new BRT route along Staten Island’s Korean War Veterans parkway receives a high cost effectiveness score since it provides a significant reduction in travel time for project riders. It improves regional accessibility and receives a high score geographic distribution. It receives a low score in equity since about a third of riders are from equity areas. The reduction in vehicle usage is moderate and it receives an average score in sustainability. Resiliency is below average compared to other projects, but it would provide connections to three rail lines, one of which is NJ Transit LRT at Bayonne. It scores poorly in capacity since it does not meaningfully reduce crowding. For network leverage, it scores below average since its alignment is along City-owned right-of-way.

Evaluation results

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Metrics</th>
<th>Result</th>
<th>Score (0-100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost, Ridership & Time Savings</td>
<td>Cost/Time saved (30 years)</td>
<td>$1.95/ min</td>
<td>93</td>
</tr>
<tr>
<td>Equity</td>
<td>Percent of riders from Equity Areas</td>
<td>37%</td>
<td>19</td>
</tr>
<tr>
<td>Sustainability</td>
<td>Change in daily vehicle miles traveled</td>
<td>-25,279</td>
<td>49</td>
</tr>
<tr>
<td>Resiliency</td>
<td>Rail connections within ½ mile (NYC) or 5 miles (suburbs)</td>
<td>3</td>
<td>17</td>
</tr>
<tr>
<td>Capacity</td>
<td>Change in passenger hours of crowding systemwide (AM peak period)</td>
<td>-46 hours</td>
<td>0</td>
</tr>
<tr>
<td>Geographic Distribution</td>
<td>Change in regional accessibility</td>
<td>-25,566 hours</td>
<td>100</td>
</tr>
<tr>
<td>Network Leverage</td>
<td>Weighted sum of MTA, Public and Private ROW</td>
<td>50%</td>
<td>33</td>
</tr>
</tbody>
</table>

Construction Cost (2027): $1.9 billion
Fleet Cost (2027): $11 million
Annual O&M Cost (2027): $29 million
Daily Ridership (2045): 16,900
New Daily Riders (2045): 3,500
Riders from Equity Areas (2045): 6,320
Travel Time Saved Per Trip (minutes): 9.9
Evaluation results

Staten Island West Shore Bus Rapid Transit

Alternative Considered: West Shore Expressway

Description: Bus Rapid Transit along West Shore Expwy from Tottenville to North Shore.

Findings

Routing the West Shore BRT via the West Shore Expressway is less cost effective than via the Korean War Veterans Parkway, as its ridership is lower while its cost is higher.
Stewart Airport Commuter Rail

Description: Implementation of new or improved transit service to Stewart International Airport (SWF). Several alternatives were analyzed, as listed below, although the Evaluation results on this page correspond to the Commuter Rail option.

- Bus from Beacon Station on the Metro-North Hudson Line
- Direct bus service from NYC
- Commuter rail extension from Salisbury Mill on the Port Jervis Line*
- Bus Rapid Transit from Salisbury Mills

Project objectives: Improve mobility and transit access between Orange County, Stewart International Airport and surrounding regions, Lower Hudson Valley, and New York City and reduce traffic and vehicle emissions to/from the airport.

Evaluation results

Construction Cost (2027): $1.4 billion
Fleet Cost (2027): $461 million
Annual O&M Cost (2027): $43 million
New Daily Riders (2045): 1,900
Riders from Equity Areas (2045): 3,260
Travel Time Saved Per Trip (minutes): 7.9

Special Considerations:
Commuter rail extension from Salisbury Mills Station on the Port Jervis Line (PJL) to SWF would be the only alternative that MTA Metro-North would operate.
Direct Manhattan Service via Secaucus Loop, Gateway Program, Penn Station Expansion, other NJ improvements, and PJL improvements are a prerequisite.
Requires coordination with the PANYNJ, NYS DOT, and the Town of New Windsor.

Findings

This project would attract relatively few riders at a high cost, and is dependent on additional long-term, high cost regional investments.

Construction of a commuter rail extension from the Port Jervis Line to Stewart Airport does not score well in most metrics. Cost effectiveness gets a low score mainly due to low ridership and the high cost. It does score above average in equity since many of its riders are from equity areas. Also, it reduces vehicle usage significantly, largely because it provides an alternative to driving to Stewart Airport therefore getting a high score in sustainability. It would only provide one new rail connection, resulting in a low resiliency score. It does not improve capacity or geographic distribution, both of which receive low scores. Network leverage gets a low score since MTA does not own the right-of-way along the proposed alignment.
Sunnyside Station (LIRR)

Description: Construction of a new Long Island Rail Road station in Sunnyside/Long Island City area.

Project objectives: Improve connectivity for Sunnyside and Long Island City neighborhoods to the existing network.

Findings

This project saves travel time for new riders but creates additional travel time for existing LIRR customers, resulting in no net time savings. Despite the relatively low cost, there are marginal benefits in an area already well served by transit.

A new LIRR station in Sunnyside/Long Island City is not cost effective even though it saves time for new riders, because it creates additional travel time for existing LIRR customers, resulting in no net time savings. It receives an average score for equity since more than half of the riders are from equity areas. It provides new connections to rail lines and scores average in resiliency, but the reduction in vehicle usage is lower than other projects and it receives a fair score in sustainability. The network leverage score is below average because MTA does not own the land required for this station.

Evaluation results

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Metrics</th>
<th>Result</th>
<th>Score (0-100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost, Ridership & Time Savings</td>
<td>Cost/Time saved (30 years)</td>
<td>No Time Saved*</td>
<td>0</td>
</tr>
<tr>
<td>Equity</td>
<td>Percent of riders from Equity Areas</td>
<td>65%</td>
<td>55</td>
</tr>
<tr>
<td>Sustainability</td>
<td>Change in daily vehicle miles traveled</td>
<td>-15,006</td>
<td>38</td>
</tr>
<tr>
<td>Resiliency</td>
<td>Rail connections within ½ mile (NYC) or 5 miles (suburbs)</td>
<td>6</td>
<td>33</td>
</tr>
<tr>
<td>Capacity</td>
<td>Change in passenger hours of crowding systemwide (AM peak period)</td>
<td>+1,216 hours</td>
<td>0</td>
</tr>
<tr>
<td>Geographic Distribution</td>
<td>Change in regional accessibility</td>
<td>-246,220 hours</td>
<td>100</td>
</tr>
<tr>
<td>Network Leverage</td>
<td>Weighted sum of MTA, Public and Private ROW</td>
<td>38%</td>
<td>17</td>
</tr>
</tbody>
</table>

* No overall time savings due to increased travel for existing users.

Special Considerations:

Unique and complex station location at Harold Interlocking.

Coordination required with Amtrak, which owns the right-of-way.

Adds travel time for existing LIRR customers.

Feasibility of Other Alternatives:

In addition to creating a stop for LIRR service, creating a stop for Metro-North Penn Access Service at the proposed Sunnyside station was explored. Metro-North and Amtrak trains from the Hell Gate Line (connecting from points north) will follow the newly constructed Westbound Bypass through the busy Harold Interlocking to avoid interference with LIRR inbound services. Since the Westbound Bypass is climbing a grade from a tunnel at the location of the proposed Sunnyside Station, it is not physically possible to stop trains using the bypass at the Sunnyside platforms (which are already locational constrained due to track geometry).
Tenth Av Station on the 7 Line

Description: Construction of a new subway station at 41 Street and 10 Avenue on the 7.

Project objectives: Shorten commute times to developing areas of Hudson Yards.

Project Description:

Construction of a new subway station at 41st Street and 10 Avenue on the 7 Line.

Project objectives:

- Shorten commute times to developing areas of Hudson Yards.

Findings:

This project has a high cost in relation to the benefits that it provides. While it would shorten travel times slightly for a small number of new riders, it would add travel time for existing riders to or from 34th St.

An infill station on the 7 line would shorten commute times for some customers traveling to and from emerging areas of Hell’s Kitchen and Hudson Yards, but the project would have a significant construction cost and would not substantially decrease crowding or expand accessibility regionally, since it serves an area already served by other transit lines. The project would reduce the travel times for those using the station by 1 minute, but it would increase the travel times of those traveling through the station by 1 minute as well, resulting in small overall time savings in relation to the cost of the project. The project does not perform well in serving riders from equity areas in relation to other projects. It scores well in network leverage since it’s within the MTA’s right-of-way.
Utica Nostrand Junction Capacity Improvements

Description: Construction of subway improvements, including three new crossovers at the Brooklyn IRT (numbered lines) terminals and extended storage tracks south of Crown Heights-Utica Av to alleviate the Nostrand Junction chokepoint and improve service.

Project objectives: Boost service reliability and capacity by mitigating congestion issues at Nostrand Junction. Addresses major bottlenecks, enhance operations, and reliability. Increase service capacity for existing customers of the 2 3 4 5 lines not just in Brooklyn, but also in Manhattan and the Bronx.

Findings

This project alleviates a major chokepoint at Nostrand Junction, resulting in significant benefits for customers along the entirety of some of the busiest subway lines, and increases service on 2 3 4 5. It reduces travel times for thousands of riders, many of them from equity areas.

The Utica Nostrand Junction Capacity Improvements scores very well in most metrics, with a low cost for total time saved, high ridership, high number of riders from equity areas. The subway improvements scores very well in reducing passenger hours of crowding, improves regional accessibility and scores highly in equity. The project reduces crowding on the 2 3 4 5 lines.

Evaluation results

- **Construction Cost (2027):** $410 million
- **Fleet Cost (2027):** $230 million
- **Annual O&M Cost (2027):** $24 million
- **Daily Ridership (2045):** 319,900
- **New Daily Riders (2045):** 8,700
- **Riders from Equity Areas (2045):** 295,080
- **Travel Time Saved Per Trip (minutes):** 1.7

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Metrics</th>
<th>Result</th>
<th>Score (0-100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost, Ridership & Time-Savings</td>
<td>Cost/Time saved (30 years)</td>
<td>$0.28/ min</td>
<td>100</td>
</tr>
<tr>
<td>Equity</td>
<td>Percent of riders from Equity Areas</td>
<td>92%</td>
<td>91</td>
</tr>
<tr>
<td>Sustainability</td>
<td>Change in daily vehicle miles traveled</td>
<td>-55,752</td>
<td>82</td>
</tr>
<tr>
<td>Resiliency</td>
<td>Rail connections within ½ mile (NYC) or 5 miles (suburbs)</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>Capacity</td>
<td>Change in passenger hours of crowding systemwide (AM peak period)</td>
<td>-13,078 hours</td>
<td>100</td>
</tr>
<tr>
<td>Geographic Distribution</td>
<td>Change in regional accessibility</td>
<td>-43,841 hours</td>
<td>100</td>
</tr>
<tr>
<td>Network Leverage</td>
<td>Weighted sum of MT, Public and Private ROW</td>
<td>100%</td>
<td>100</td>
</tr>
</tbody>
</table>

Scorecard

<p>| | | | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Special Considerations:

Subway improvements are required to add capacity and remove Nostrand Junction bottlenecks; this is a separate project and is assumed as a baseline condition for for Utica Avenue transit improvements.

Branch to Flatbush Av-Brooklyn College loses direct service requires cross-platform transfer to Lexington Av line weekdays

Service Plan:

- 2 3 lines to/from Flatbush Av-Brooklyn College
- 2 3 lines to/from Crown Heights-Utica Av and New Lots Av

A new 4 line to/from New Lots Av with local stops at Nostrand Av and Kingston Av

Above, Utica Nostrand Junction Capacity Improvements
Utica Alt A: BRT (Kings Plaza to Woodhull Hospital)

Description: Implementation of enhanced transit services along the Utica Avenue Corridor in southeast Brooklyn by considering several options, with subway improvements as part of the baseline. Alternative A consists of a Bus Rapid Transit (BRT) route between Kings Plaza and Woodhull Hospital, with center running BRT lanes and stations.

Project objectives: Improve travel options for intra- and inter-borough travelers in underserved communities to activity centers; provides opportunities for development and growth near stations; address major bottlenecks and enhances service for existing customers of the 2 3 4 6 lines as well as the B46 local and B46-SBS bus customers, one of the city’s busiest bus corridors.

Evaluation results

Construction Cost (2027): $300 million

Fleet Cost (2027): N/A

Annual O&M Cost (2027): $6 million

Daily Ridership (2045): 71,900

New Daily Riders (2045): 3,900

Riders from Equity Areas (2045): 67,810

Travel Time Saved Per Trip (minutes): 3.9

Service Plan:
- 2 lines to/from Flatbush Av-Brooklyn College
- 4 line to/from New Lots Av and Crown Heights-Utica Av
- 5 to New Lots Av and Crown Heights-Utica Av
- 8 to New Lots Av

BRT (Alt A): BRT replaces B46 local/SBS between Woodhull Hospital and Kings Plaza

Findings

Utica Alt A BRT does very well in cost effectiveness and equity.

A BRT route between Kings Plaza- Woodhull Hospital receives a high cost effectiveness score due to its relatively low cost, high ridership and moderate time savings. It also scores highly in equity with most of its riders from equity areas. Since the BRT would extend north of Utica Avenue, it would provide rail connections to the 2 3 4 6 , as well as the 2 at Utica Avenue, resulting in an average resiliency score. The reduction in vehicle usage is moderate in relation to other projects and it receives average scores in sustainability. This BRT option scores poorly in capacity since it would result in a net increase in crowding due to transfers to the subway, increasing it on others that are at or near capacity already. Regional accessibility is improved but is relatively low compared to other projects and scores below average. Since most of the BRT alignment is on New York City-owned streets and not on MTA property, it gets an average network leverage score.
Utica Alt B: Subway to Kings Plaza

Description: Implementation of enhanced transit services along the Utica Avenue Corridor in southeast Brooklyn by considering several options, with subway improvements as part of the baseline. Alternative B consists of a subway extension to Kings Plaza.

Project objectives: Improve travel options for intra- and inter-borough travelers in underserved communities to activity centers; provides opportunities for development and growth near stations; address major bottlenecks and enhances service for existing customers of the 2, 3, 4, 5 lines as well as the B46 local and B46-SBS bus customers, one of the city’s busiest bus corridors.

Evaluation results

Construction Cost (2027): $15.8 billion
Fleet Cost (2027): $410 million
Annual O&M Cost (2027): $124 million
Daily Ridership (2045): 55,600
New Daily Riders (2045): 2,900
Riders from Equity Areas (2045): 48,060
Travel Time Saved Per Trip (minutes): 9.0

Service Plan:
- 2, 3 lines to/from Flatbush Av-Brooklyn College
- 4 line to/from New Lots Av
- 5 line to/from Kings Plaza
- 8 line to/from Kings Plaza with local stops at Nostrand Av and Kingston Av

Findings

Utica Alt B is in the middle when it comes to cost effectiveness, mainly because of travel time savings and high ridership. However, cost is extremely high, especially in comparison to the Utica Alt A BRT, which also delivers significant benefits for a fraction of the cost.

A full subway extension to Kings Plaza along Utica Avenue (Alt B) receives an above average cost effectiveness score mainly due to the travel time savings it provides project riders, though it is very expensive. It scores well in equity with the majority of its riders from equity areas. With only two new rail connections, it receives a low score in resiliency, because, unlike the BRT, the subway extension would not provide new connections to the 4, 5, 7, 9 north Utica Avenue. It would reduce vehicle usage enough that it receives an average score in sustainability. This subway extension has the potential to reduce crowding systemwide and gets a average score for capacity. Similarly, it would improve regional accessibility somewhat, and gets an average score for geographic distribution. Since most of the subway alignment is on New York City-owned streets and not on MTA property, it gets an average network leverage score.
Utica Alt C: Subway to Church Avenue and BRT

Description: Implementation of enhanced transit services along the Utica Avenue Corridor in southeast Brooklyn by considering several options, with subway improvements as part of the baseline. Alternative C consists of a subway extension to Church Avenue and a Bus Rapid Transit route between Kings Plaza and Woodhull Hospital.

Project objectives: Improve travel options for intra- and inter-borough travelers in underserved communities to activity centers; provides opportunities for development and growth near stations; address major bottlenecks and enhances service for existing customers of the 234 5 lines as well as the B46 local and B46-SBS bus customers, one of the city’s busiest bus corridors.

Evaluation results

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Metrics</th>
<th>Result</th>
<th>Score (0-100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost, Ridership & Time Savings</td>
<td>Cost/Time saved (30 years)</td>
<td>$1.73/ min</td>
<td>95</td>
</tr>
<tr>
<td>Equity</td>
<td>Percent of riders from Equity Areas</td>
<td>93%</td>
<td>92</td>
</tr>
<tr>
<td>Sustainability</td>
<td>Change in daily vehicle miles traveled</td>
<td>-39,094</td>
<td>64</td>
</tr>
<tr>
<td>Resiliency</td>
<td>Rail connections within ½ mile (NYC) or 5 miles (suburbs)</td>
<td>6</td>
<td>33</td>
</tr>
<tr>
<td>Capacity</td>
<td>Change in passenger hours of crowding systemwide (AM peak period)</td>
<td>-4,121 hours</td>
<td>51</td>
</tr>
<tr>
<td>Geographic Distribution</td>
<td>Change in regional accessibility</td>
<td>-12,715 hours</td>
<td>49</td>
</tr>
<tr>
<td>Network Leverage</td>
<td>Weighted sum of MTA, Public and Private ROW</td>
<td>59%</td>
<td>45</td>
</tr>
</tbody>
</table>

Findings

Utica Alt C is in the middle when it comes to cost effectiveness, mainly because of travel time savings and high ridership. However, the cost is extremely high, especially in comparison to the Utica Alt A BRT, which also delivers significant benefits for a fraction of the cost.

A partial subway extension to Church Avenue along Utica Avenue (Alt C) receives an above average cost effectiveness score mainly due to the travel time savings for a significant number of riders in a dense portion of Brooklyn, though it is still quite expensive. It scores well in equity with the majority of its riders from equity areas. It provides six new rail connections and receives an average score in resiliency, and an above average score in sustainability due to a significant reduction in vehicle usage. This partial subway extension gets average scores in capacity and geographic distribution since it does result in some crowding reductions and improves regional accessibility. Since most of the alignment is on New York City-owned streets and not on MTA property, it gets an average network leverage score.
W to Red Hook

Description: Extension of the W line from Whitehall Street in Manhattan through the Montague Street Tunnel to Red Hook, Brooklyn with three additional new stations at Columbia St, Atlantic Basin, and Red Hook.

Project objectives: Increase service and transit options for communities in Red Hook; reduce travel times between Red Hook and Lower Manhattan; and provide opportunities for development and growth near stations.

Project: Increase service and transit options for communities in Red Hook; reduce travel times between Red Hook and Lower Manhattan; and provide opportunities for development and growth near stations.

Findings

The project performs poorly due to its high cost in relation to its benefits. Despite reducing crowding, the project would attract relatively few riders, while providing no significant improvements in time savings, geographic distribution, or percentage of equity riders.

Extending the W line to Red Hook gets a low score in cost effectiveness due to its high cost and low ridership. It does not score well in equity with less than a quarter of its riders from equity areas. It reduces vehicle usage slightly, but in comparison to other projects, it gets a below average score in sustainability. Only one new rail connection is provided resulting in a low score in resiliency. This project scores very well in capacity since it reduces crowding on existing subway lines by providing an alternative to the 4523RN lines serving Brooklyn, and improves crowding on the W by providing additional service on the parallel W. Geographic distribution receives a low score, relative to other projects, since the regional accessibility improvement is small. The network leverage score is average because only about a third of the alignment is on MTA-owned right-of-way.
This report was made possible by the hard work and dedication of countless staff across the MTA. The research and analysis conducted within MTA Construction & Development and the MTA’s operating agencies over the last two years has been critical in ensuring the MTA continues to move forward strategically and responsibly.
The 20-Year Needs Assessment provides the path toward a resilient, reliable, and modern transit system that is safer and more efficient. These investments will unlock a new generation of prosperity for the region.

To see the full plan, please visit future.MTA.info